Line 346: Line 346:
  
 
<br>  
 
<br>  
 +
 +
Solution 2:
 +
 +
<math>x^{(\ast)}=A^{\dagger}b</math>
  
 
<br>  
 
<br>  
Line 376: Line 380:
 
  \end{matrix}</math>
 
  \end{matrix}</math>
 
        
 
        
    Since it is already in canonical form. Because <span class="texhtml">''r''<sub>2</sub> =  − 7</span>, we bring <span class="texhtml">''a''<sub>2</sub></span> into the basis.
+
Since it is already in canonical form. Because <span class="texhtml">''r''<sub>2</sub> =  − 7</span>, we bring <span class="texhtml">''a''<sub>2</sub></span> into the basis.
  
 
       After computing the ratios, we pivot about the (1,2) element of the tableau to obtain
 
       After computing the ratios, we pivot about the (1,2) element of the tableau to obtain

Revision as of 20:19, 25 January 2013

AC - 3 August 2012 QE

Problem 1. (20 pts)

(i) (10 pts) Find the factor by which the uncertainty range is reduced when using the Fibonacci method. Assume that the last step has the form

$ \begin{align} 1- \rho_{N-1} = \frac{F_{2}}{F_{3}} = \frac{2}{3}, \end{align} $

where N − 1 is the number of steps performed in the uncertainty range reduction process.



Solution:

   The reduction factor is (1 − ρ1)(1 − ρ2)(1 − ρ3)...(1 − ρN − 1)
Since 
$  1- \rho_{N-1} = \frac{F_{2}}{F_{3}} = \frac{2}{3},  $
we have 
$  1- \rho_{N-2} = \frac{F_{3}}{F_{4}} $     and so on.
   Then, we have
$  (1- \rho_{1})(1- \rho_{2})(1- \rho_{3})...(1- \rho_{N-1}) = \frac{F_{N}}{F_{N+1}}   \frac{F_{N-1}}{F_{N}}   ...   \frac{F_{2}}{F_{3}} = \frac{F_{2}}{F_{N+1}} $
Therefore, the reduction factor is
$ \frac{2}{F_{N+1}} $


Solution 2:

The uncertainty interval is reduced by $ (1- \rho_{1})(1- \rho_{2})(1- \rho_{3})...(1- \rho_{N-1}) = \frac{F_{N}}{F_{N+1}} \frac{F_{N-1}}{F_{N}} ... \frac{F_{2}}{F_{3}} = \frac{F_{2}}{F_{N+1}} $



(ii)(10 pts) It is known that the minimizer of a certain function f(x) is located in the interval[-5, 15]. What is the minimal number of iterations of the Fibonacci method required to box in the minimizer within the range 1.0? Assume that the last useful value of the factor reducing the uncertainty range is 2/3, that is

$ 1- \rho_{N-1} = \frac{F_{2}}{F_{3}} = \frac{2}{3}, $


Solution:

      Final Range: 1.0; Initial Range: 20.
      $  \frac{2}{F_{N+1}} \le \frac{1.0}{20} $, or $  F_{N+1} \ge 40 $ 
      So, N + 1 = 9
      Therefore, the minimal iterations is N-1 or 7.


Solution 2:

Since the final range is 1.0 and the initial range is 20, we can say Failed to parse (syntax error): \frac{2}{F_{N+1}} \le \frac{1.0}{20} or equivalently F_{N+1}} \ge 40

From the inequality, we get $ F_{N+1} \ge 40 , so N+1=9 $. Therefore the minimum number of iteration is N-1=7


Problem 2. (20pts) Employ the DFP method to construct a set of Q-conjugate directions using the function

      $ f = \frac{1}{2}x^TQx - x^Tb+c  $
     $   =\frac{1}{2}x^T  \begin{bmatrix}   1 & 1 \\   1 & 2  \end{bmatrix}x-x^T\begin{bmatrix}   2  \\   1  \end{bmatrix} + 3. $

Where x(0) is arbitrary.


Solution:

      $ f = \frac{1}{2}x^TQx - x^Tb+c  $
   Use initial  point x(0) = [0,0]T and H0 = I2
   I'n <span class="texhtml" />his <span class="texhtml" />case,
   $ g^{(k)} = \begin{bmatrix}   1 & 1 \\   1 & 2  \end{bmatrix} x^{(k)} - \begin{bmatrix}   2  \\   1  \end{bmatrix} $
      H'e'n'c'e, 
   $ g^{(0)} = \begin{bmatrix}   -2  \\   -1  \end{bmatrix}, $  $ d^{(0)} = -H_0g^{(0)} =- \begin{bmatrix}   1 & 0 \\   0 & 1  \end{bmatrix}\begin{bmatrix}   -2  \\   -1  \end{bmatrix} = \begin{bmatrix}   2  \\   1  \end{bmatrix} $


      Because f is aquadraticfunction,
      $ \alpha_0 = argminf(x^{(0)} + \alpha d^{(0)}) = - \frac{g^{(0)^T}d^{(0)}}{d^{(0)^T}Qd^{(0)}} = - \frac{\begin{bmatrix}   -2 & -1   \end{bmatrix}\begin{bmatrix}   2  \\   1  \end{bmatrix}}{\begin{bmatrix}   2 & 1\end{bmatrix}\begin{bmatrix}   1 & 1 \\   1 & 2  \end{bmatrix}\begin{bmatrix}   2  \\   1  \end{bmatrix}} = \frac{1}{2} $
      $ x^{(1)} = x^{(0)} + \alpha d^{(0)} = \frac{1}{2} \begin{bmatrix}   2  \\   1  \end{bmatrix} = \begin{bmatrix}   1  \\   \frac{1}{2}  \end{bmatrix} $
      $ \Delta x^{(0)} = x^{(1)}- x^{(0)} = \begin{bmatrix}   1  \\   \frac{1}{2}  \end{bmatrix} $
   $ g^{(1)} =\begin{bmatrix}   1 & 1 \\   1 & 2  \end{bmatrix} x^{(1)} - \begin{bmatrix}   2  \\   1  \end{bmatrix}= \begin{bmatrix}   -\frac{1}{2}  \\   1  \end{bmatrix} $
      $ \Delta g^{(0)} = g^{(1)} - g^{(0)} = \begin{bmatrix}   -\frac{3}{2}  \\   2  \end{bmatrix}  $


      O'b's'e'r'v'e t'h'a't:
   $ \Delta x^{(0)} \Delta x^{(0)^T} = \begin{bmatrix}   1  \\   \frac{1}{2}   \end{bmatrix} \begin{bmatrix}   1  & \frac{1}{2}   \end{bmatrix} = \begin{bmatrix}   1 & \frac{1}{2}  \\   \frac{1}{2}  & \frac{1}{4}   \end{bmatrix}  $
   $  \Delta x^{(0)^T} \Delta g^{(0)} = \begin{bmatrix}   1  & \frac{1}{2}   \end{bmatrix}\begin{bmatrix}   \frac{3}{2}   \\   2   \end{bmatrix}  = \frac{5}{2} $
   $ H_0 \Delta g^{(0)} = \begin{bmatrix}   1 & 0 \\   0 & 1  \end{bmatrix} \begin{bmatrix}   \frac{3}{2}   \\   2   \end{bmatrix} = \begin{bmatrix}   \frac{3}{2}   \\   2   \end{bmatrix}, $ $ (H_0 \Delta g^{(0)})(H_0 \Delta g^{(0)})^T = \begin{bmatrix}   \frac{9}{4}  & 3 \\   3 & 4  \end{bmatrix} $
   $ \Delta g^{(0)^T}H_0 \Delta g^{(0)} = \begin{bmatrix}   \frac{3}{2}  & 2   \end{bmatrix} \begin{bmatrix}   1 & 0 \\   0 & 1  \end{bmatrix} \begin{bmatrix}   \frac{3}{2}  \\ 2   \end{bmatrix} = \frac{25}{4} $
   Using the above, now we have
   $ H_1 = H_0 + \frac{\Delta x^{(0)} \Delta x^{(0)^T}}{\Delta x^{(0)^T} \Delta g^{(0)}} - \frac{(H_0 \Delta g^{(0)})(H_0 \Delta g^{(0)})^T}{\Delta g^{(0)^T}H_0 \Delta g^{(0)} }  = \begin{bmatrix}   1 & 0 \\   0 & 1  \end{bmatrix} + \begin{bmatrix}   \frac{2}{5} & \frac{1}{5} \\   \frac{1}{5} & \frac{1}{10}  \end{bmatrix} - \frac{25}{4}\begin{bmatrix}   \frac{9}{4} & 3 \\   3 & 4  \end{bmatrix} = \begin{bmatrix}   \frac{26}{25} & -\frac{7}{25} \\   -\frac{7}{25} & \frac{23}{50}  \end{bmatrix} $
      T'hen we have,
   $ d^{(1)} = -H_1 g^{(0)} = - \begin{bmatrix}   \frac{26}{25} & -\frac{7}{25} \\   -\frac{7}{25} & \frac{23}{50}  \end{bmatrix} \begin{bmatrix}   -\frac{1}{2}  \\   1  \end{bmatrix} = \begin{bmatrix}   \frac{4}{5}  \\   -\frac{3}{5}  \end{bmatrix} $
      $ \alpha_1 = argminf(x^{(1)} + \alpha d^{(1)}) = - \frac{g^{(1)^T}d^{(1)}}{d^{(1)^T}Qd^{(1)}} = - \frac{\begin{bmatrix}   -2 & 1   \end{bmatrix}\begin{bmatrix}   \frac{4}{5}  \\   -\frac{3}{5}  \end{bmatrix}}{\begin{bmatrix}   \frac{4}{5} & -\frac{3}{5}\end{bmatrix}\begin{bmatrix}   1 & 1 \\   1 & 2  \end{bmatrix}\begin{bmatrix}   \frac{4}{5}  \\   -\frac{3}{5}  \end{bmatrix}} = \frac{5}{2} $
      $ x^{(2)} = x^{(1)} + \alpha_1 d^{(1)} = \begin{bmatrix}   1  \\   \frac{1}{2}  \end{bmatrix} + \frac{5}{2}\begin{bmatrix}   \frac{4}{5}  \\   -\frac{3}{5}  \end{bmatrix} = \begin{bmatrix}   3  \\   -1  \end{bmatrix}  $
      $ \Delta x^{(1)} = x^{(2)} - x^{(1)} = \begin{bmatrix}   2  \\   -\frac{3}{2}  \end{bmatrix} $
   $ g^{(2)} = \begin{bmatrix}   1 & 1 \\   1 & 2  \end{bmatrix} x^{(0)} - \begin{bmatrix}   2  \\   1  \end{bmatrix} = \begin{bmatrix}   0  \\   0  \end{bmatrix} $
      Note that we have $ d^{(0)^T}Qd^{(0)} = 0; $
   that is, $ d^{(0)} = \begin{bmatrix}   2  \\   1  \end{bmatrix} $ a'n'd $ d^{(1)}  = \begin{bmatrix}   \frac{4}{5}  \\   -\frac{3}{5}  \end{bmatrix} $ are Q-conjugate directions.


Problem 3. (20pts) For the system of linear equations,<span class="texhtml" />'x = b, where

$ A = \begin{bmatrix} 1 & 0 &-1 \\ 0 & 1 & 0 \\ 0 & -1& 0 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} $

Find the minimum length vector $ x^{(\ast)} $ that minimizes $ \| Ax -b\|^{2}_2 $



Solutions:

      $ A = BC = \begin{bmatrix}   1 & 0  \\   0 & 1   \\   0 & -1  \end{bmatrix} \begin{bmatrix}   1 & 0 &-1  \\   0 & 1 & 0    \end{bmatrix} $
      $ B^{\dagger} = (B^T B)^{-1}B^T = \begin{bmatrix}   1 & 0 \\   0 & 2    \end{bmatrix}^{-1} \begin{bmatrix}   1 & 0 & 0  \\   0 & 1 & -1    \end{bmatrix} = \begin{bmatrix}   1 & 0 & 0  \\   0 & \frac{1}{2} & -\frac{1}{2}    \end{bmatrix} $
      $ C^{\dagger} = C^T(CC^T)^{-1} =\begin{bmatrix}   1 & 0  \\   0 & 1   \\   -1 & 0  \end{bmatrix} \begin{bmatrix}   2 & 0 \\   0 & 1    \end{bmatrix}^{-1} = \begin{bmatrix}   \frac{1}{2} & 0  \\   0 & 1   \\   -\frac{1}{2} & 0  \end{bmatrix}  $
      $ A^{\dagger} = C^{\dagger}B^{\dagger} =\begin{bmatrix}   \frac{1}{2} & 0  \\   0 & 1   \\   -\frac{1}{2} & 0  \end{bmatrix} \begin{bmatrix}   1 & 0 & 0  \\   0 & \frac{1}{2} & -\frac{1}{2}    \end{bmatrix} =  \begin{bmatrix}   \frac{1}{2} & 0 & 0  \\   0 & \frac{1}{2} & -\frac{1}{2}  \\   -\frac{1}{2} & 0 & 0  \end{bmatrix} $
      $  x^{\ast} = A^{\dagger} b = \begin{bmatrix}   \frac{1}{2} & 0 & 0  \\   0 & \frac{1}{2} & -\frac{1}{2}  \\   -\frac{1}{2} & 0 & 0  \end{bmatrix}\begin{bmatrix}   0 \\   \frac{1}{2} \\   1  \end{bmatrix} = \begin{bmatrix}   0 \\   \frac{1}{2} \\   0  \end{bmatrix} $


Solution 2:

$ x^{(\ast)}=A^{\dagger}b $


Problem 4. (20pts) Use any simplex method to solve the following linear program.

           Maximize    x1 + 2x2
        S'ubject to    $ -2x_1+x_2 \le 2 $
                       $ x_1-x_2 \ge -3 $
                       $ x_1 \le -3 $
                       $ x_1 \ge 0, x_2 \ge 0. $



Solution:

        We can transfer the problem to the following standard form:
        Mnimize    x1 − 2x2
        Sbject to     − 2x1 + x2 + x3 = 2
                       x1 + x2 + x4 = 3
                       x1 + x5 = 3
                       $ x_1, x_2, x_3, x_4, x_5 \ge 0. $
       We form the corresponding tableau for the problem
     $ \begin{matrix}   a_1 & a_2 & a_3 & a_4 & a_5 & b \\   -2 & 1& 1 &0& 0& 2 \\   -1& 1& 0 &1 &0 &3\\   1 &0& 0& 0& 1& 3\\   -1& -2 &0& 0& 0& 0  \end{matrix} $
      
Since it is already in canonical form. Because r2 =  − 7, we bring a2 into the basis.
      After computing the ratios, we pivot about the (1,2) element of the tableau to obtain
     $ \begin{matrix}   a_1 & a_2 & a_3 & a_4 & a_5 & b \\   -2 & 1& 1 &0& 0& 2 \\   1& 0& -1 &1 &0 &1\\   1 &0& 0& 0& 1& 3\\   -5& 0 &2& 0& 0& 4  \end{matrix} $
      Similarly, we pivot about the (2,1) element to obtain 
     $ \begin{matrix}   a_1 & a_2 & a_3 & a_4 & a_5 & b \\   0 & 1& -1 &2& 0& 4 \\   1& 0& -1 &1 &0 &1\\   0 &0& 1& -1& 1& 2\\   0& 0 &-3& 5& 0& 9  \end{matrix} $
      Similarly, we pivot about the (3,3) element to obtain 
     $ \begin{matrix}   a_1 & a_2 & a_3 & a_4 & a_5 & b \\   0 & 1& 0 &1& 1& 6 \\   1& 0& 0 &0 &1 &3\\   0 &0& 1& -1& 1& 2\\   0& 0 &0& 2& 3& 15  \end{matrix} $
      Therefore, x1 = 3, x2 = 6, maximize the function.


Problem 5.(20pts) Solve the following problem:

           Minimize    $ -x_1^2 + 2x_2 $
        Subject to    $ x_1^2+x_2^2 \le 1 $
                       $  x_1 \ge 0 $
                       $ x_2 \ge 0 $

(i)(10pts) Find the points that satisfy the KKT condition.

Solution:

        Standard Form:
        Minimize    $ -x_1^2 + 2x_2 $
        Su   $ g_1(x) = x_1^2+x_2^2 - 1 \le 0 $
                       $ g_2(x) = -x_2 \le 0 $
        The KKT Condition.
     $ 1. \mu _1, \mu _2 \ge 0 $  
     2. − 2x1 + 2x1μ1 = 0  
       2.2 + 2x2μ1 − μ2 = 0  
     $ 3. (x_1^2+x_2^2-1)\mu_1 - x_2\mu _2 = 0 $  
     $ 4. g_1(x),g_2(x) \le 0 $  


        Case 1:
     I'f μ1 = 0 and μ2 = 0,
           t'h'e'n,2 = 0which is impossible.
     
     Case 2:
     I'f μ1 = 0 and $ \mu_2 \not= 0, $
           t'h'e'n2 = 2,x1 = 0,x2 = 0..
        Case 3:
     I'f $ \mu_1 \not= 0 $ and μ2 = 0,
           $ then, x_1^2 + x_2^2 = 1  $
                     $ if x1 \not= 0, then \mu_1 = 1, x_2 = -1  $which is impossible.
                     if x1 = 0,then x2 = 1,μ1 =  − 1which is impossible.
        Case 4:
     I'f $ \mu_1 \not= 0 $ and $ \mu_2 \not= 0, $
           $ then, x_2 = 0, x_1^2 + x_2^2 = 1. So,  x_1 = 1, \mu_1 = 1, \mu_2 = 2.  $.
        Therefore, there are two points that satisfy KKT condition.

     $ \begin{bmatrix}   \mu_1 ^{\ast}= 0 \\ \mu_2 ^{\ast}= 2 \\ x_1^{\ast}= 0 \\x_2^{\ast}= 0   \end{bmatrix}and \begin{bmatrix}   \mu_1 ^{\ast}= 1 \\ \mu_2 ^{\ast}= 2 \\ x_1^{\ast}= 1 \\x_2^{\ast}= 0   \end{bmatrix}  $ 


(ii)(10pts)Apply the SONC and SOSC to determine the nature of the critical points from the previous part.

Solution:

        Apply SOSC to the first point.
     $ \nabla g_2(x)^t y = 0 $
     $ \begin{bmatrix}   0 & -1  \end{bmatrix} y = 0 $
     $ y = \begin{bmatrix}   a \\ 0  \end{bmatrix},  a\not= 0 $
        $ L(x,\mu) = F(x) + \mu_2 G_2(x) =\begin{bmatrix}   -2 & 0 \\ 0 & 0   \end{bmatrix}  $
     Check ytL(x,μ)y
     $ \begin{bmatrix}   a & 0  \end{bmatrix}\begin{bmatrix}   -2 & 0 \\ 0 & 0   \end{bmatrix} \begin{bmatrix}   a \\ 0  \end{bmatrix} = -2a^2 \lneq 0 $ which means SOSC fails.


        Apply SOSC to the second point.
     $ \nabla g_1(x)^t y = 0,  $
        $ \begin{bmatrix}   2x_1 & 2x_2  \end{bmatrix} y = 0 $
     $ y = \begin{bmatrix}   0 \\ a  \end{bmatrix} where a\not= 0 $
        $ L(x,\mu) = F(x) + \mu_1 G_1(x) + \mu_2 G_2(x) =\begin{bmatrix}   -2 & 0 \\ 0 & 0   \end{bmatrix}  + \begin{bmatrix}   2 & 0 \\ 0 & 2    \end{bmatrix}  = \begin{bmatrix}   0 & 0 \\ 0 & 2   \end{bmatrix}  $
     Check ytL(x,μ)y
     $ \begin{bmatrix}   0 & a  \end{bmatrix}\begin{bmatrix}   0 & 0 \\ 0 & 2   \end{bmatrix} \begin{bmatrix}   0 \\ a  \end{bmatrix} = 2a^2 \gneq 0 $ that implies
     $ \begin{bmatrix}   x^{\ast} = 1\\ x^{\ast} = 0   \end{bmatrix} $ is the minimized point.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood