# Continuous-time Fourier transform computation (in terms of frequency f in hertz)

Compute the Continuous-time Fourier transform of the two following functions:

$x(t)= \text{rect}(t) = \left\{ \begin{array}{ll} 1, & \text{ if } |t|<\frac{1}{2}\\ 0, & \text{ else} \end{array} \right.$

$y(t)= \frac{ \sin ( \pi t )}{\pi t}$

Justify your answer.

## Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!

### Answer 1

Fourier Transform of rect(t):

$X(f)=\int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dx =\int_{\frac{-1}{2}}^{\frac{1}{2}} e^{-j2\pi ft} dx =\frac{e^{-j2\pi ft}}{-j2\pi f}$ from t=-1/2 to t=1/2

$=\frac{e^{-j\pi f}-e^{j\pi f}}{-j2\pi f} =\frac{sin(\pi f)}{\pi f}$

Instructor's comments: Technically, you should look at the case f=0 separately, because your solution involves a division by f. -pm

Fourier Transform of $\frac{sin(\pi t)}{\pi t}$:

Guess: $X(f)=rect(t)$

Proof:

$x(t)=\int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df =\int_{\frac{-1}{2}}^{\frac{1}{2}} e^{j2\pi ft} df =\frac{e^{j2\pi ft}}{j2\pi t}$ from f=-1/2 to f=1/2

$=\frac{e^{j\pi t}-e^{j\pi t}}{j2\pi t} =\frac{sin(\pi t)}{\pi t}$

Instructor's comments: Guessing the answer and proving it using the inverse Fourier transform is a good trick. One could also obtain this Fourier transform using the duality property and your previous answer. -pm

### Answer 2

$X(f)=\int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt =\int_{-\infty}^{\infty} rect(t)e^{-j2\pi ft} dt =\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-j2\pi ft} dt$

$= -\frac{e^{-j2\pi ft}}{-j2\pi f}$ integrating from -0.5 to +0.5. $= \frac{e^{-j\pi f} - e^{j\pi f}}{-j2\pi f} = \frac{sin(\pi f)}{\pi f}$

For y(t), we know that

$y(t) = \int_{-\infty}^{\infty} Y(f)e^{j2\pi ft} df$

$y(t)= \frac{ \sin ( \pi t )}{\pi t} = \frac{e^{-j\pi t} - e^{j\pi t}}{\pi t}$

For the above equation to be true,

$Y(f) = \frac{\delta(f - \frac{1}{2})}{\pi t} - \frac{\delta(f + \frac{1}{2})}{\pi t}$

### Answer 3

$X(f)=\int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt = \int_{-1/2}^{1/2} e^{-j2\pi ft} dt = \frac{e^-j2\pi ft}{j2 \pi f},where x from-1/2 to 1/2 =sinc(f)$ $use duality, Y(f)=rect(x)$

### Answer 4

Using Euler's equation, we know

$y(t)= \frac{ \sin ( \pi t )}{\pi t} = \frac{e^{j\pi t} - e^{-j\pi t}}{j2\pi t}$

Do Fourier transform one component at a time,

$\mathcal{F}[e^{j\pi t}] = \int_{-\infty}^{\infty} e^{j\pi t}e^{-j2\pi ft} dt$

## Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang