Line 10: Line 10:
 
----
 
----
 
===Answer 1===
 
===Answer 1===
Write it here.
+
Guess: <math> X(f)=\delta (f-\frac{1}{2})</math>
 +
 
 +
Proof:
 +
 
 +
<math> x(t)=\int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df
 +
        = \int_{-\infty}^{\infty} \delta (f-\frac{1}{2})e^{j2\pi ft} df
 +
        = \int_{-\infty}^{\infty} \delta (f-\frac{1}{2})e^{j\pi t} df
 +
        = e^{j\pi t} \int_{-\infty}^{\infty} \delta (f-\frac{1}{2}) df
 +
        = e^{j\pi t} </math>
 +
 
 
===Answer 2===
 
===Answer 2===
 
Write it here.
 
Write it here.

Revision as of 16:56, 3 September 2011

Continuous-time Fourier transform of a complex exponential

What is the Fourier transform of $ x(t)= e^{j \pi t} $? Justify your answer.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Guess: $ X(f)=\delta (f-\frac{1}{2}) $

Proof:

$ x(t)=\int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df = \int_{-\infty}^{\infty} \delta (f-\frac{1}{2})e^{j2\pi ft} df = \int_{-\infty}^{\infty} \delta (f-\frac{1}{2})e^{j\pi t} df = e^{j\pi t} \int_{-\infty}^{\infty} \delta (f-\frac{1}{2}) df = e^{j\pi t} $

Answer 2

Write it here.

Answer 3

write it here.


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva