Line 25: Line 25:
 
'''<font size="4px"> 6.1 Equilibrium Point </font>'''
 
'''<font size="4px"> 6.1 Equilibrium Point </font>'''
  
<font size="3px"> An equilibrium point is a constant solution to a differential equation. Hence, for an ODE system, an equilibrium point is going to be a solution of a pair of constants. Set all of the differential terms equal to <math>0</math> to find the equilibrium point.</font>
+
<font size="3px"> An equilibrium point is a constant solution to a differential equation. Hence, for an ODE system, an equilibrium point is going to be a solution of a pair of constants. Set all of the differential terms equal to <math>0</math> to find the equilibrium point.
 +
 
 +
In the example in 6.0, we set <math>\frac{dx}{dt}=\frac{dy}{dt}=0</math>, hence <math>x(1-2x-3y)=2y(3-x-2y)=0</math>. Solve this system of normal equations.
 +
 
 +
'''&#183;''' When <math>x=2y=0</math>, then <math>x=y=0</math>.
 +
 
 +
'''&#183;''' When <math>x=3-2x-2y=0</math>, then <math>x=0</math>, <math>y=\frac{3}{2}</math>.
 +
 
 +
'''&#183;''' When <math>1-2x-3y=2y=0</math>, then <math>x=\frac{1}{2}</math>, <math>y=0</math>.
 +
 
 +
'''&#183;''' When <math>1-2x-3y=3-x-2y=0</math>, then <math>x=-7</math>, <math>y=5</math>.
 +
 
 +
Hence, the equilibrium points of this nonlinear system are <math>(x=0,y=0)</math>, <math>(x=0,y=\frac{3}{2}</math>, <math>(x=\frac{1}{2},y=0)</math>, and <math>(x=-7,y=5)</math>.
 +
</font>
  
  

Revision as of 21:54, 20 November 2017

Non-Linear Systems of ODEs

A slecture by Yijia Wen

6.0 Concept

Consider the system of ODEs in 4.0,

$ \frac{dx_1}{dt}=f_1(t,x_1,x_2,...x_n) $

$ \frac{dx_2}{dt}=f_2(t,x_1,x_2,...x_n) $

...

$ \frac{dx_n}{dt}=f_n(t,x_1,x_2,...x_n) $

When the $ n $ ODEs are not all linear, this is a nonlinear system of ODE. Consider an example,

$ \frac{dx}{dt}=x(1-2x-3y) $,

$ \frac{dy}{dt}=2y(3-x-2y) $.

In this tutorial, we will analyse this system in different aspects to build up a basic completed concept.


6.1 Equilibrium Point

An equilibrium point is a constant solution to a differential equation. Hence, for an ODE system, an equilibrium point is going to be a solution of a pair of constants. Set all of the differential terms equal to $ 0 $ to find the equilibrium point.

In the example in 6.0, we set $ \frac{dx}{dt}=\frac{dy}{dt}=0 $, hence $ x(1-2x-3y)=2y(3-x-2y)=0 $. Solve this system of normal equations.

· When $ x=2y=0 $, then $ x=y=0 $.

· When $ x=3-2x-2y=0 $, then $ x=0 $, $ y=\frac{3}{2} $.

· When $ 1-2x-3y=2y=0 $, then $ x=\frac{1}{2} $, $ y=0 $.

· When $ 1-2x-3y=3-x-2y=0 $, then $ x=-7 $, $ y=5 $.

Hence, the equilibrium points of this nonlinear system are $ (x=0,y=0) $, $ (x=0,y=\frac{3}{2} $, $ (x=\frac{1}{2},y=0) $, and $ (x=-7,y=5) $.


6.2 Non-Linear Non-Autonomous System


6.3 Exercises


6.4 References

Institute of Natural and Mathematical Science, Massey University. (2017). 160.204 Differential Equations I: Course materials. Auckland, New Zealand.

Robinson, J. C. (2003). An introduction to ordinary differential equations. New York, NY., USA: Cambridge University Press.

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal