(2 intermediate revisions by the same user not shown) | |||

Line 1: | Line 1: | ||

[[Category:MA271Fall2020Walther]] | [[Category:MA271Fall2020Walther]] | ||

+ | ==Vector Laplacian== | ||

+ | |||

+ | The Laplace operator is originally an operation where you input a scalar function and it returns a scalar function. However, there is an alternate version of the Laplace operator that can be performed on vector fields. | ||

+ | |||

+ | The vector Laplacian is defined as: | ||

+ | |||

+ | <math>\Delta F = \nabla^2 F = \nabla (\nabla \cdot F) - \nabla \times (\nabla \times F) \\</math> | ||

+ | |||

+ | where F is a vector field. In Cartesian coordinates, the vector Laplacian simplifies to the following: | ||

+ | |||

+ | <math> | ||

+ | F = \left[\begin{array}{1} | ||

+ | M \\ | ||

+ | N \\ | ||

+ | P | ||

+ | \end{array}\right] \\ | ||

+ | \Delta F = | ||

+ | \nabla | ||

+ | \left(\left[\begin{array}{1} | ||

+ | \frac{\partial}{\partial x} \\ | ||

+ | \frac{\partial}{\partial y} \\ | ||

+ | \frac{\partial}{\partial z} | ||

+ | \end{array}\right] | ||

+ | \cdot \left[\begin{array}{1} | ||

+ | M \\ | ||

+ | N \\ | ||

+ | P | ||

+ | \end{array}\right] \right) | ||

+ | -\nabla \times | ||

+ | \left(\left[\begin{array}{1} | ||

+ | \frac{\partial}{\partial x} \\ | ||

+ | \frac{\partial}{\partial y} \\ | ||

+ | \frac{\partial}{\partial z} | ||

+ | \end{array}\right] | ||

+ | \times \left[\begin{array}{1} | ||

+ | M \\ | ||

+ | N \\ | ||

+ | P | ||

+ | \end{array}\right] \right) \\ | ||

+ | |||

+ | \Delta F = | ||

+ | \nabla (M_x + N_y + P_z) - | ||

+ | \left[\begin{array}{1} | ||

+ | \frac{\partial}{\partial x} \\ | ||

+ | \frac{\partial}{\partial y} \\ | ||

+ | \frac{\partial}{\partial z} | ||

+ | \end{array}\right] | ||

+ | \times | ||

+ | \left[\begin{array}{1} | ||

+ | P_y - N_z \\ | ||

+ | M_z - P_x \\ | ||

+ | N_x - M_y | ||

+ | \end{array}\right] \\ | ||

+ | |||

+ | \Delta F = \left[\begin{array}{1} | ||

+ | M_{xx} + N_{xy} + P_{xz} \\ | ||

+ | M_{xy} + N_{yy} + P_{yz} \\ | ||

+ | M_{xz} + N_{yz} + P_{zz} | ||

+ | \end{array}\right] | ||

+ | - \left[\begin{array}{1} | ||

+ | N_{xy} + P_{xz} - M_{yy} - M_{zz} \\ | ||

+ | M_{xy} + P_{yz} - N_{xx} - N_{zz} \\ | ||

+ | M_{xz} + N_{yz} - P_{xx} - P_{yy} | ||

+ | \end{array}\right] \\ | ||

+ | |||

+ | \Delta F = \left[\begin{array}{1} | ||

+ | M_{xx} + M_{yy} + M_{zz} \\ | ||

+ | N_{xx} + N_{yy} + N_{zz} \\ | ||

+ | P_{xx} + P_{yy} + P_{zz} | ||

+ | \end{array}\right] \\ | ||

+ | |||

+ | \Delta F = \left[\begin{array}{1} | ||

+ | \Delta M \\ | ||

+ | \Delta N \\ | ||

+ | \Delta P | ||

+ | \end{array}\right] \\ | ||

+ | </math> | ||

+ | |||

+ | The formulas, let alone the derivations, for the vector Laplacian in other coordinate systems are a bit too complex for the level of this article. However, if you wanted to see the formulas, they can be found [https://mathworld.wolfram.com/VectorLaplacian.html here]. | ||

[[Walther_MA271_Fall2020_topic9|Back to main page]] | [[Walther_MA271_Fall2020_topic9|Back to main page]] |

## Latest revision as of 00:34, 7 December 2020

## Vector Laplacian

The Laplace operator is originally an operation where you input a scalar function and it returns a scalar function. However, there is an alternate version of the Laplace operator that can be performed on vector fields.

The vector Laplacian is defined as:

$ \Delta F = \nabla^2 F = \nabla (\nabla \cdot F) - \nabla \times (\nabla \times F) \\ $

where F is a vector field. In Cartesian coordinates, the vector Laplacian simplifies to the following:

$ F = \left[\begin{array}{1} M \\ N \\ P \end{array}\right] \\ \Delta F = \nabla \left(\left[\begin{array}{1} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{array}\right] \cdot \left[\begin{array}{1} M \\ N \\ P \end{array}\right] \right) -\nabla \times \left(\left[\begin{array}{1} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{array}\right] \times \left[\begin{array}{1} M \\ N \\ P \end{array}\right] \right) \\ \Delta F = \nabla (M_x + N_y + P_z) - \left[\begin{array}{1} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{array}\right] \times \left[\begin{array}{1} P_y - N_z \\ M_z - P_x \\ N_x - M_y \end{array}\right] \\ \Delta F = \left[\begin{array}{1} M_{xx} + N_{xy} + P_{xz} \\ M_{xy} + N_{yy} + P_{yz} \\ M_{xz} + N_{yz} + P_{zz} \end{array}\right] - \left[\begin{array}{1} N_{xy} + P_{xz} - M_{yy} - M_{zz} \\ M_{xy} + P_{yz} - N_{xx} - N_{zz} \\ M_{xz} + N_{yz} - P_{xx} - P_{yy} \end{array}\right] \\ \Delta F = \left[\begin{array}{1} M_{xx} + M_{yy} + M_{zz} \\ N_{xx} + N_{yy} + N_{zz} \\ P_{xx} + P_{yy} + P_{zz} \end{array}\right] \\ \Delta F = \left[\begin{array}{1} \Delta M \\ \Delta N \\ \Delta P \end{array}\right] \\ $

The formulas, let alone the derivations, for the vector Laplacian in other coordinate systems are a bit too complex for the level of this article. However, if you wanted to see the formulas, they can be found here.