Line 5: Line 5:
 
a. The corresponding electric field equation for this potential
 
a. The corresponding electric field equation for this potential
  
Using the identity
+
Using the identity <math>E = - \nabla V</math>, we know that we need to compute the gradient of <math>V</math>. We get:
 +
 
 +
<math>
 +
\nabla V = \Bigg[\frac{\partial}{\partial x}(x^3yz+2y^2z+xz^4),\frac{\partial}{\partial y}(x^3yz+2y^2z+xz^4),\frac{\partial}{\partial z}(x^3yz+2y^2z+xz^4)\Bigg]\\
 +
\nabla V = \Big[3x^2yz + z^4,x^3z + 4yz,x^3y + 2y^2 + 4xz^3\Big]
 +
 
 +
</math>
  
 
b. The charge density of the field at <math>(2,-3)</math>
 
b. The charge density of the field at <math>(2,-3)</math>
Line 11: Line 17:
 
<math></math>
 
<math></math>
 
[[Walther_MA271_Fall2020_topic9|Back to main page]]
 
[[Walther_MA271_Fall2020_topic9|Back to main page]]
 +
 +
<math>E = - \nabla V</math>
 +
 +
<math>
 +
\nabla \cdot E = \frac{\rho}{\epsilon_0}
 +
</math>
 +
 +
 +
<math>
 +
\Delta V = -\Large\frac{\rho}{\epsilon_0}
 +
</math>

Revision as of 22:22, 6 December 2020

Electric Potential Sample Problem

Given electric potential equation $ V = x^3yz+2y^2z+xz^4 $, find:

a. The corresponding electric field equation for this potential

Using the identity $ E = - \nabla V $, we know that we need to compute the gradient of $ V $. We get:

$ \nabla V = \Bigg[\frac{\partial}{\partial x}(x^3yz+2y^2z+xz^4),\frac{\partial}{\partial y}(x^3yz+2y^2z+xz^4),\frac{\partial}{\partial z}(x^3yz+2y^2z+xz^4)\Bigg]\\ \nabla V = \Big[3x^2yz + z^4,x^3z + 4yz,x^3y + 2y^2 + 4xz^3\Big] $

b. The charge density of the field at $ (2,-3) $


Back to main page

$ E = - \nabla V $

$ \nabla \cdot E = \frac{\rho}{\epsilon_0} $


$ \Delta V = -\Large\frac{\rho}{\epsilon_0} $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva