Line 13: Line 13:
 
A concurrent definition for a harmonic function is the idea that the value at a point in a function is always equal to the average of the values along a circle surrounding that point. This leads to an interesting conclusion about the Laplace Operator itself, in that when <math> \Delta f = 0 </math>, the above statement is true.
 
A concurrent definition for a harmonic function is the idea that the value at a point in a function is always equal to the average of the values along a circle surrounding that point. This leads to an interesting conclusion about the Laplace Operator itself, in that when <math> \Delta f = 0 </math>, the above statement is true.
  
 +
<center>
  
 +
[[File:Laplace's_equation_on_an_annulus.svg.png|center|Example of Harmonic Function]]
  
 
[[Walther_MA271_Fall2020_topic9|Back to main page]]
 
[[Walther_MA271_Fall2020_topic9|Back to main page]]

Revision as of 19:00, 6 December 2020


Applications: Harmonic Functions

Definition

Harmonic functions are functions that satisfy the equation

$ \frac{\partial^{2} f}{\partial x_{1}^{2}}+\frac{\partial^{2} f}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2} f}{\partial x_{n}^{2}}=0 $, or $ \large\Delta f = \nabla^{2} f = 0 $.

A concurrent definition for a harmonic function is the idea that the value at a point in a function is always equal to the average of the values along a circle surrounding that point. This leads to an interesting conclusion about the Laplace Operator itself, in that when $ \Delta f = 0 $, the above statement is true.

Example of Harmonic Function
Back to main page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang