Line 7: Line 7:
 
<br>
 
<br>
 
<br>
 
<br>
A = <math>\left(\begin{array}{cccc}4&3\\3&2\end{array}\right)</math>  
+
<math>A = \left(\begin{array}{cccc}4&3\\3&2\end{array}\right)</math>  
 
<br>
 
<br>
A<sup>-1</sup> = <math>\left(\begin{array}{cccc}-2&3\\3&-4\end{array}\right)</math>   
+
<math>A^{-1} = \left(\begin{array}{cccc}-2&3\\3&-4\end{array}\right)</math>   
  
 
<br>
 
<br>
  
AA<sup>-1</sup> = <math>\left(\begin{array}{cccc}4&3\\3&2\end{array}\right)</math><math>\left(\begin{array}{cccc}-2&3\\3&-4\end{array}\right) = </math> <math>\left(\begin{array}{cccc}1&0\\0&1\end{array}\right)</math>  
+
<math>AA^{-1} = \left(\begin{array}{cccc}4&3\\3&2\end{array}\right)</math><math>\left(\begin{array}{cccc}-2&3\\3&-4\end{array}\right) = </math> <math>\left(\begin{array}{cccc}1&0\\0&1\end{array}\right)</math>  
  
 
<br>
 
<br>
  
and A<sup>-1</sup>A = <math>\left(\begin{array}{cccc}-2&3\\3&-4\end{array}\right)</math><math>\left(\begin{array}{cccc}4&3\\3&2\end{array}\right) = </math><math>\left(\begin{array}{cccc}1&0\\0&1\end{array}\right)</math>   
+
<math>and   A^{-1} = \left(\begin{array}{cccc}-2&3\\3&-4\end{array}\right)</math><math>\left(\begin{array}{cccc}4&3\\3&2\end{array}\right) = </math><math>\left(\begin{array}{cccc}1&0\\0&1\end{array}\right)</math>   
  
 
----
 
----
Line 49: Line 49:
  
 
<p> If      <math>A = \left(\begin{array}{cccc}a&b\\c&d\end{array}\right)</math>  then the inverse of matrix A can be found using:
 
<p> If      <math>A = \left(\begin{array}{cccc}a&b\\c&d\end{array}\right)</math>  then the inverse of matrix A can be found using:
 
+
<br>
<math>A^{-1}\frac{1}{detA}\left(\begin{array}{cccc}d&-b\\-c&a\end{array}\right)</math>
+
<math>A^{-1} = \frac{1}{detA}\left(\begin{array}{cccc}d&-b\\-c&a\end{array}\right)</math>
  
  

Revision as of 08:15, 10 December 2012

Inverse of a Matrix

An n x n matrix A is said to have an inverse provided there exists an n x n matrix B such that AB = BA = In. We call B the inverse of A and denote it as A-1. Thus, AA-1 = A-1A = In. In this case, A is also called nonsingular.


Example.

$ A = \left(\begin{array}{cccc}4&3\\3&2\end{array}\right) $
$ A^{-1} = \left(\begin{array}{cccc}-2&3\\3&-4\end{array}\right) $


$ AA^{-1} = \left(\begin{array}{cccc}4&3\\3&2\end{array}\right) $$ \left(\begin{array}{cccc}-2&3\\3&-4\end{array}\right) = $ $ \left(\begin{array}{cccc}1&0\\0&1\end{array}\right) $


$ and A^{-1} = \left(\begin{array}{cccc}-2&3\\3&-4\end{array}\right) $$ \left(\begin{array}{cccc}4&3\\3&2\end{array}\right) = $$ \left(\begin{array}{cccc}1&0\\0&1\end{array}\right) $


Theorem 1

The inverse of a matrix, if it exists, is unique

Theorem 2

If A and B are both nonsingular n x n matrices (i.e. invertible), then AB is nonsingular and (AB)-1 = B-1A-1.

Corollary 1

If A1, A2, ..., Ar are n x n nonsingular matrices, then A1A2...Ar is nonsingular an (A1A2...Ar)-1 = Ar-1Ar-1-1...A1-1.

Theorem 3

If A is a nonsingular matrix, then A-1 is nonsingular and (A-1)-1 = A.

Theorem 4

If A is a nonsingular matrix, then AT is nonsingular and (A-1)T = (AT)-1.



Methods for determining the inverse of a matrix

Shortcut for determining the inverse of a 2 x 2 matrix

If $ A = \left(\begin{array}{cccc}a&b\\c&d\end{array}\right) $ then the inverse of matrix A can be found using:
$ A^{-1} = \frac{1}{detA}\left(\begin{array}{cccc}d&-b\\-c&a\end{array}\right) $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang