(Created page with "'''Introduction''' The Laplace Operator is an operator defined as the divergence of the gradient of a function. Image:laplaceoperatorgeneral.png")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
[[Category:MA271Fall2020Walther]]
 
'''Introduction'''
 
'''Introduction'''
  
 
The Laplace Operator is an operator defined as the divergence of the gradient of a function.  
 
The Laplace Operator is an operator defined as the divergence of the gradient of a function.  
 +
<math>{\large\Delta=\nabla\cdot\nabla=\nabla^{2}=\bigg[\frac{\partial}{\partial x_{1}},\cdots,\frac{\partial}{\partial x_{N}}\bigg]\cdot\bigg[\frac{\partial}{\partial x_{1}},\cdots,\frac{\partial}{\partial x_{N}}\bigg]=\sum\limits_{n=1}^{N}\frac{\partial^{2}}{\partial x^{2}_{n}}}</math>
  
[[Image:laplaceoperatorgeneral.png]]
+
[[Walther_MA271_Fall2020_topic9|Back to main page]]

Latest revision as of 23:24, 5 December 2020

Introduction

The Laplace Operator is an operator defined as the divergence of the gradient of a function. $ {\large\Delta=\nabla\cdot\nabla=\nabla^{2}=\bigg[\frac{\partial}{\partial x_{1}},\cdots,\frac{\partial}{\partial x_{N}}\bigg]\cdot\bigg[\frac{\partial}{\partial x_{1}},\cdots,\frac{\partial}{\partial x_{N}}\bigg]=\sum\limits_{n=1}^{N}\frac{\partial^{2}}{\partial x^{2}_{n}}} $

Back to main page

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch