Revision as of 07:37, 25 August 2010 by Mboutin (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Return to previous page

Scaling of the Dirac Delta (Impulse Function)

$ \displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;for\;\;\alpha>0 $

Mini Proof

$ \int_{-\infty}^{\infty}\delta(x)dx = 1 $

$ \displaystyle Let\;\;\;y=\alpha x\;\;\;\;\;\;\;\;\;\;\;\;\;dx=\frac{dy}{\alpha} $

$ \displaystyle\int_{-\infty}^{\infty}\delta(\alpha x)dx=\int_{-\infty}^{\infty}\delta(y)\frac{dy}{\alpha}=\frac{1}{\alpha} $

Therefore...

$ \displaystyle \delta(\omega)=\delta(2\pi f)=\frac{1}{2\pi}\delta(f) $

$ \displaystyle 2\pi\delta(\omega)=\delta(f) $

To convert $ \delta(f) $ to radians, simply replace $ \delta(f) $ with $ 2\pi\delta(\omega) $

Which also means that..

$ P_T(f)=\frac{1}{T_s}\sum_{n=-\infty}^{\infty}\delta(f-\frac{n}{T_s})\;\;\;\;\;\;\;\;\;\;\;f_s=\frac{1}{T_s} $

$ P_T(\omega)=\frac{2\pi}{T_s}\sum_{n=-\infty}^{\infty}\delta(w-n\frac{2\pi}{T_s})\;\;\;\;\;\;\;w_s=\frac{2\pi}{T_s} $

Return to previous page

Return to ECE438

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang