Revision as of 12:27, 16 September 2013 by Rhea (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


The Signal

$ (t e^{-4t} \sin{6 \pi t}) u(t) \ $


The Fourier Transform

$ X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j\omega t}dt $


$ X(\omega)=\int_{-\infty}^{\infty} (te^{-4t}\sin{6\pi t})u(t) e^{-j\omega t}dt $


$ X(\omega)=\int_{0}^{\infty} (te^{-4t}\sin{6\pi t}) e^{-j\omega t}dt $


$ X(\omega)=\int_{0}^{\infty} (te^{-4t})(\frac {e^{j 6 \pi t} - e^{-j 6 \pi t}}{2 j}) e^{-j\omega t}dt $


$ X(\omega)=\int_{0}^{\infty} \frac {t e^{-4t} e^{j 6 \pi t} e^{-j\omega t}}{2 j} - \frac {t e^{-4t} e^{-j 6 \pi t} e^{-j\omega t}}{2 j}dt $


$ X(\omega)=\int_{0}^{\infty} \frac {t e^{t(j(6 \pi - \omega)-4)}}{2 j} - \frac {t e^{t(-j(6 \pi + \omega)-4)}}{2 j}dt $


$ X(\omega)= \frac{(t (j(6 \pi - \omega)-4) - 1) e^{t(j(6 \pi - \omega)-4)}}{2 j (j(6 \pi - \omega)-4)} - \frac{(t (-j(6 \pi + \omega)-4) - 1) e^{t(-j(6 \pi + \omega)-4)}}{2 j (-j(6 \pi + \omega)-4)}\bigg]_0^\infty $


$ X(\omega)= \frac{-1}{2 j (j(6 \pi - \omega)-4)} + \frac{1}{2 j (-j(6 \pi + \omega)-4)} $



Comments/questions

  • A faster/easier way to solve this problem would be to use the Multiplication Property

Back to Practice Problems on CT Fourier transform

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett