Line 6: Line 6:
  
 
=[[HW4ECE38F15|Homework 4]] Solution, [[ECE438]], [[2015_Fall_ECE_438_Boutin|Fall 2015]], [[user:mboutin|Prof. Boutin]]=
 
=[[HW4ECE38F15|Homework 4]] Solution, [[ECE438]], [[2015_Fall_ECE_438_Boutin|Fall 2015]], [[user:mboutin|Prof. Boutin]]=
 +
 +
THIS SOLUTION IS WRONG. PLEASE CHANGE ASAP!
  
 
==Question ==
 
==Question ==

Revision as of 10:55, 19 October 2015


Homework 4 Solution, ECE438, Fall 2015, Prof. Boutin

THIS SOLUTION IS WRONG. PLEASE CHANGE ASAP!

Question

A continuous-time signal x(t) is such that its CTFT X(f) is zero when when |f|>1,400 Hz. You would like to low-pass-filter the signal x(t) with a cut off frequency of 800Hz and a gain of 7. Let's call this desired filtered signal y(t).


a) Assume that you are only given a sampling of x(t), specifically a sampling obtained by taking 6000 samples per second (samples equally spaced in time). Can one process this sampling in such a way that a band-limited interpolation of the processed (output) DT signal would be the same as y(t)? Answer yes/no. If you answered yes, explain how. If you answered no, explain why not.

Answer: No. Since the sampling frequency is 6000 Hz, there will be no aliasing when we sample the signal which has the maximum frequency of 1400 Hz (fs > 2*fm). However, when we apply LPF with 800 Hz cutoff, we loose signal in the range 800 Hz < |f| < 1400 Hz. So the low-passed signal cannot be reconstructed perfectly.


b) Now assume that the sampling from Part a) is downsampled by a factor 2. Can one process this downsampled signal in such a way a band-limited interpolation of the processed (output) DT signal would be the same as y(t)? Answer yes/no. If you answered yes, explain how. If you answered no, explain why not.

Answer: No. The same reason as part (a).

Discussion

You may discuss the homework below.

  • write comment/question here
    • answer will go here

Back to Homework4

Back to ECE438, Fall 2015, Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang