Line 22: Line 22:
 
Therefore,
 
Therefore,
  
<math>\chi(\omega)=e^{j\omega \frac{\pi}{12}}2\pi \delta(\omega-2\pi k)</math>
+
<math>\mathcal X (\omega)=e^{j\omega \frac{\pi}{12}}2\pi \delta(\omega-2\pi k)</math>
  
 
--[[User:Cmcmican|Cmcmican]] 20:52, 21 February 2011 (UTC)
 
--[[User:Cmcmican|Cmcmican]] 20:52, 21 February 2011 (UTC)
Line 29: Line 29:
  
 
=== Answer 2  ===
 
=== Answer 2  ===
Write it here.
+
I'll try this again, using my new answer from the previous problem, and correcting my time shifting property.
 +
 
 +
<math>\mathfrak{F}\Bigg(s(t-t_0)\Bigg)=e^{-j\omega t_0}\mathfrak{F}\Bigg(x(t)\Bigg)</math>
 +
 
 +
Therefore <math class="inline">\mathcal X (\omega) =e^{-j\omega \frac{\pi}{12}}\Bigg(\pi\delta(\omega-2\pi)+\pi\delta(\omega+2\pi)\Bigg)</math>
 +
 
 
=== Answer 3  ===
 
=== Answer 3  ===
 
Write it here.
 
Write it here.
 
----
 
----
 
[[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]
 
[[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]

Revision as of 13:43, 23 February 2011


Practice Question on Computing the Fourier Transform of a Continuous-time Signal

Compute the Fourier transform of the signal

$ x(t) = \cos (2 \pi t+\frac{\pi}{12} )\ $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Use answer to previous practice problem and the time shifting property.

$ \mathfrak{F}\Bigg(s(t-t_0)\Bigg)=e^{j\omega t_0}\mathfrak{F}\Bigg(x(t)\Bigg) $

Therefore,

$ \mathcal X (\omega)=e^{j\omega \frac{\pi}{12}}2\pi \delta(\omega-2\pi k) $

--Cmcmican 20:52, 21 February 2011 (UTC)

TA's comments: In the time shift property of the Fourier transform that you provided, it should be $ e^{-j\omega t_0} $ and not $ e^{j\omega t_0} $. Another thing is that the transform of a cosine should yield only two deltas in the frequency domain.

Answer 2

I'll try this again, using my new answer from the previous problem, and correcting my time shifting property.

$ \mathfrak{F}\Bigg(s(t-t_0)\Bigg)=e^{-j\omega t_0}\mathfrak{F}\Bigg(x(t)\Bigg) $

Therefore $ \mathcal X (\omega) =e^{-j\omega \frac{\pi}{12}}\Bigg(\pi\delta(\omega-2\pi)+\pi\delta(\omega+2\pi)\Bigg) $

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva