Revision as of 22:16, 5 August 2017 by Oelgendy (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


ECE Ph.D. Qualifying Exam

MICROELECTRONICS and NANOTECHNOLOGY (MN)

Question 2: Junction Devices

August 2007



Questions

All questions are in this link

Solutions of all questions

1) A) Forward

B) $ 10^{16}cm^{-3} $

C) $ 10^{14}cm^{-3} $

D) $ 10^{9}\times10^{14} = n_i^2 $ $ \implies n_i = 10^{23/2} $

E) Yes.

F) $ \begin{align*} \triangle P_n&=10^{12}-10^9\approx 10^{12}\\ \triangle P_n&=\frac{n_i^2}{N_D}(e^{qV_A/kT}-1)=10^{12}\\ &\implies e^{qV_A/kT} = 10^3\\ &\implies V_A = 0.026\times\ln(10^3) = 0.026\times6.9\\ &= 0.17 V \end{align*} $

 ------------------------------------------------------------------------------------

2) $ \begin{align*} |I_E| & = qD_p\frac{10^{10}}{0.1\times10^{-4}} = 1.8\times10^{16}q\\ |I_B| & = qD_n\frac{10^{8}}{0.2\times10^{-4}} = 1.8\times10^{14}q\\ \beta + 1 &= \frac{|I_E|}{|I_B|}\approx 67\\ &\therefore \beta= 66 \text{ (chk)} \end{align*} $

------------------------------------------------------------------------------------

3) A)

$  \alpha_T = \frac{0.997J_0}{0.998J_0} = 0.99  $

B)

$  \gamma = \frac{0.998J_0}{(0.998+0.002)J_0} = 0.998   $

C)D) 
 $   \begin{align*}  \alpha_{dc} &= \gamma\cdot\alpha_T\\  &=0.98802  \end{align*}   $ 
$  \beta_{dc} = \frac{\alpha_{dc}}{1-\alpha_{dc}}\approx 82   $
$   \begin{align*} I_E &= (0.998+0.002)J_0 = J_0\\ I_C &= 0.997J_0\\ I_B &= I_E-I_C = 0.003J_0  \end{align*}  $
------------------------------------------------------------------------------------
4)
$  \text{Derivation of } \beta = \frac{D_n}{D_p}\cdot\frac{W_E}{W_B}\cdot\frac{N_E}{N_B}\cdot\frac{n_{iB}^2}{n_{iE}^2}  $
------------------------------------------------------------------------------------



Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett