Line 6: Line 6:
  
 
==Question from [[ECE_PhD_QE_CNSIP_Jan_2001_Problem1|ECE QE January 2001]]==  
 
==Question from [[ECE_PhD_QE_CNSIP_Jan_2001_Problem1|ECE QE January 2001]]==  
Question here
+
Let the <math class="inline">\mathbf{X}_{1},\mathbf{X}_{2},\cdots</math>  be a sequence of random variables that converge in mean square to the random variable <math class="inline">\mathbf{X}</math> . Does the sequence also converge to <math class="inline">\mathbf{X}</math>  in probability? (A simple yes or no answer is not acceptable, you must derive the result.)
 
----
 
----
 
==Share and discuss your solutions below.==
 
==Share and discuss your solutions below.==
 
----
 
----
 
=Solution 1 (retrived from [[ECE600_QE_2000_August|here]])=
 
=Solution 1 (retrived from [[ECE600_QE_2000_August|here]])=
Write it here
+
 
 +
Let the <math class="inline">\mathbf{X}_{1},\mathbf{X}_{2},\cdots</math>  be a sequence of random variables that converge in mean square to the random variable <math class="inline">\mathbf{X}</math> . Does the sequence also converge to <math class="inline">\mathbf{X}</math>  in probability? (A simple yes or no answer is not acceptable, you must derive the result.)
 +
 
 +
We know that <math class="inline">E\left[\left|\mathbf{X}-\mathbf{X}_{n}\right|^{2}\right]\rightarrow0</math>  as <math class="inline">n\rightarrow\infty</math> .
 +
 
 +
By using [[ECE 600 Chebyshev Inequality|Chebyshev Inequality]],
 +
 
 +
<math class="inline">\lim_{n\rightarrow\infty}P\left(\left\{ \mathbf{X}-\mathbf{X}_{n}\right\} \geq\epsilon\right)\leq\lim_{n\rightarrow\infty}\left(\frac{E\left[\left|\mathbf{X}-\mathbf{X}_{n}\right|^{2}\right]}{\epsilon^{2}}\right)=\frac{\lim_{n\rightarrow\infty}E\left[\left|\mathbf{X}-\mathbf{X}_{n}\right|^{2}\right]}{\epsilon^{2}}=0.</math>
 +
 
 +
<math class="inline">\therefore</math>  A sequence of random variable that converge in mean square sense to the random variable <math class="inline">\mathbf{X}</math> , also converges in probability to <math class="inline">\mathbf{X}</math> .
 +
::<span style="color:green">Question: Should we prove Chebyshev Inequality to get full credit?</span>
 
----
 
----
 
==Solution 2==
 
==Solution 2==

Revision as of 06:46, 17 July 2012


Question from ECE QE January 2001

Let the $ \mathbf{X}_{1},\mathbf{X}_{2},\cdots $ be a sequence of random variables that converge in mean square to the random variable $ \mathbf{X} $ . Does the sequence also converge to $ \mathbf{X} $ in probability? (A simple yes or no answer is not acceptable, you must derive the result.)


Share and discuss your solutions below.


Solution 1 (retrived from here)

Let the $ \mathbf{X}_{1},\mathbf{X}_{2},\cdots $ be a sequence of random variables that converge in mean square to the random variable $ \mathbf{X} $ . Does the sequence also converge to $ \mathbf{X} $ in probability? (A simple yes or no answer is not acceptable, you must derive the result.)

We know that $ E\left[\left|\mathbf{X}-\mathbf{X}_{n}\right|^{2}\right]\rightarrow0 $ as $ n\rightarrow\infty $ .

By using Chebyshev Inequality,

$ \lim_{n\rightarrow\infty}P\left(\left\{ \mathbf{X}-\mathbf{X}_{n}\right\} \geq\epsilon\right)\leq\lim_{n\rightarrow\infty}\left(\frac{E\left[\left|\mathbf{X}-\mathbf{X}_{n}\right|^{2}\right]}{\epsilon^{2}}\right)=\frac{\lim_{n\rightarrow\infty}E\left[\left|\mathbf{X}-\mathbf{X}_{n}\right|^{2}\right]}{\epsilon^{2}}=0. $

$ \therefore $ A sequence of random variable that converge in mean square sense to the random variable $ \mathbf{X} $ , also converges in probability to $ \mathbf{X} $ .

Question: Should we prove Chebyshev Inequality to get full credit?

Solution 2

Write it here.


Back to QE CS question 1, January 2001

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang