Line 39: Line 39:
 
Let <math>f(n) = n</math> and <math>g(n)=\frac{n}{2}</math>. Then </math>f(n) = O(g(n))</math>.  
 
Let <math>f(n) = n</math> and <math>g(n)=\frac{n}{2}</math>. Then </math>f(n) = O(g(n))</math>.  
 
Now, <math>3^{f(n)}=3^n</math>, <math>f(3^{f(n)})=O(3^n)</math>; however, <math>O(3^{g(n)})=O(3^{\frac{n}{2}})</math>. So <math>f(3^{f(n)}) \neq O(3^{g(n)})</math>.
 
Now, <math>3^{f(n)}=3^n</math>, <math>f(3^{f(n)})=O(3^n)</math>; however, <math>O(3^{g(n)})=O(3^{\frac{n}{2}})</math>. So <math>f(3^{f(n)}) \neq O(3^{g(n)})</math>.
 +
 +
----
 +
===Solution 2===
 +
(a)  Assume <math>T(n) = O(\log n)</math>, so
 +
<math>
 +
\begin{equation}
 +
\begin{aligned}
 +
T(\sqrt[]{n}) &= O(\log \sqrt[]{n} ) \\
 +
&= O(\frac{1}{2}\log n)
 +
\end{aligned}
 +
\end{equation}
 +
</math>
 +
So,
 +
<math>
 +
\begin{equation}
 +
\begin{aligned}
 +
T(n) &= 2 T(\sqrt[]{n}) + \log n \\
 +
&= O(\log n ) + \log n \\
 +
&= O(\log n)
 +
\end{aligned}
 +
\end{equation}
 +
</math>
 +
 +
(b)
 +
<math>f(n)</math> is <math>O(\log n)</math>, then <math>f(n) <= g(n)</math>. So,
 +
<math>
 +
\begin{equation}
 +
3^{f(n)} <= 3^{g(n)}
 +
\end{equation}
 +
</math>
 +
So, <math>3^{f(n)}</math> is <math>O(3^{g(n)})</math>
  
 
[[ECE-QE_CE1-2013|Back to QE CE question 1, August 2013]]
 
[[ECE-QE_CE1-2013|Back to QE CE question 1, August 2013]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 19:15, 20 July 2017


ECE Ph.D. Qualifying Exam

Computer Engineering(CE)

Question 1: Algorithms

August 2013


Solution 1

(a) First, let us change the variable. Let $ n = 2^{m} $, so equivalently, we have $ m = \log_2 n $. Thus, $ \sqrt[]{n} = 2^{\frac{m}{2}} $.

Then we have: $ T(2^m) = 2 T(2^{\frac{m}{2}}) + \log {2^m} = 2 T(2^{\frac{m}{2}}) + m $. We denote the running time in terms of $ m $ is $ S(m) $, so $ S(m) = T(2^m) $, where $ m = \log n $. so we have $ S(m) = 2S(\frac{m}{2})+ m $.

Now this recurrence can in in the form of $ T(m) = aT(\frac{m}{b})+ f(m) $, where $ a=2 $, $ b=2 $, and $ f(m)=m $.

$ f(m) = m = \Theta(n^{\log _{b}{a}}) = \Theta(n) $. So the second case of master's theorem applies, we have $ S(k) = \Theta(k^{\log _{b}{a}} \log k) = \Theta(k \log k) $.

Replace back with $ T(2^m) =S(m) $, and $ m = \log_2 n $, we have $ T(n) = \Theta((\log n) (\log \log n)) $.

For the given recurrence, we replace n with $ 2^m $ and denote the running time as $ S(m) $. Thus,we have $ S(m) = T(2^m) = 2 T(2^{\frac{m}{2}}) + m $

(b) $ 3^{f(n)} $ is NOT $ O(3^{g(n)} $, here is an counter example: Let $ f(n) = n $ and $ g(n)=\frac{n}{2} $. Then </math>f(n) = O(g(n))</math>. Now, $ 3^{f(n)}=3^n $, $ f(3^{f(n)})=O(3^n) $; however, $ O(3^{g(n)})=O(3^{\frac{n}{2}}) $. So $ f(3^{f(n)}) \neq O(3^{g(n)}) $.


Solution 2

(a) Assume $ T(n) = O(\log n) $, so $ \begin{equation} \begin{aligned} T(\sqrt[]{n}) &= O(\log \sqrt[]{n} ) \\ &= O(\frac{1}{2}\log n) \end{aligned} \end{equation} $ So, $ \begin{equation} \begin{aligned} T(n) &= 2 T(\sqrt[]{n}) + \log n \\ &= O(\log n ) + \log n \\ &= O(\log n) \end{aligned} \end{equation} $

(b) $ f(n) $ is $ O(\log n) $, then $ f(n) <= g(n) $. So, $ \begin{equation} 3^{f(n)} <= 3^{g(n)} \end{equation} $ So, $ 3^{f(n)} $ is $ O(3^{g(n)}) $

Back to QE CE question 1, August 2013

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics