(One intermediate revision by one other user not shown)
Line 7: Line 7:
 
[[Category: Properties]]
 
[[Category: Properties]]
 
[[Category: Convolution]]
 
[[Category: Convolution]]
 
+
=Framework for computing the CT Convolution of two unit step exponentials=
 
Let's take the convolution of the two most general unit-step exponentials in CT.
 
Let's take the convolution of the two most general unit-step exponentials in CT.
  
Line 14: Line 14:
 
(I know this is kinda long, but it is very detailed to show the process of how to get to the general simplified solution.)
 
(I know this is kinda long, but it is very detailed to show the process of how to get to the general simplified solution.)
  
: <math> x_1(t)=Ae^{Bt+C}u(Dt+E) \qquad x_2(t)=Fe^{Gt+H}u(It+J) </math>
+
<math> x_1(t)=Ae^{Bt+C}u(Dt+E) \qquad x_2(t)=Fe^{Gt+H}u(It+J) </math>
 +
 
 +
<math> \begin{align} x_1(t)*x_2(t) &= \int_{-\infty}^{\infty}x_1(\tau)x_2(t-\tau)d\tau \\
 +
&=\int_{-\infty}^{\infty}Ae^{B\tau+C}u(D\tau+E)Fe^{G(t-\tau)+H}u(I(t-\tau)+J)d\tau \\
 +
&=AF\int_{-\infty}^{\infty}e^{B\tau+C+G(t-\tau)+H}u(D\tau+E)u(It-I\tau+J)d\tau; \;(u(D\tau+E)=0\;,for\;D\tau+E<0\;\rightarrow\;\tau<\frac{-E}{D}) \\
 +
&=AF\int_{\frac{-E}{D}}^{\infty}e^{\tau(B-G)+Gt+C+H}u(It-I\tau+J)d\tau;
 +
\;(u(It-I\tau+J)=0\;,for\;It-I\tau+J<0\;\rightarrow\;\tau>t+\frac{J}{I}) \\
 +
&=AF\int_{\frac{-E}{D}}^{t+\frac{J}{I}}e^{\tau(B-G)+Gt+C+H}d\tau\cdot u(t+\frac{J}{I}+\frac{E}{D}) \\
 +
&=AFe^{Gt+C+H}\int_{\frac{-E}{D}}^{t+\frac{J}{I}}e^{\tau(B-G)}d\tau\cdot u(t+\frac{J}{I}+\frac{E}{D}) \\
 +
&=AFe^{Gt+C+H}\frac{1}{B-G}\left[e^{\tau(B-G)}\right]_{\frac{-E}{D}}^{t+\frac{J}{I}}\cdot u(t+\frac{J}{I}+\frac{E}{D}) \\
 +
&=AFe^{Gt+C+H}\frac{1}{B-G}(e^{(t+\frac{J}{I})\cdot(B-G)}-e^{\frac{-E}{D}\cdot(B-G)})\cdot u(t+\frac{J}{I}+\frac{E}{D}) \\
 +
&=\frac{AF}{B-G}(e^{Gt+CH+(t+\frac{J}{I})\cdot(B-G)}-e^{Gt+C+H-\frac{E}{D}(B-G)})\cdot u(t+\frac{J}{I}+\frac{E}{D}) \\
 +
&=\frac{AF}{B-G}(e^{Bt+C+H+\frac{J}{I}(B-G)}-e^{Gt+C+H+\frac{E}{D}(G-B)})\cdot u(t+\frac{J}{I}+\frac{E}{D}) \end{align} </math>
  
: <math> x_1(t)*x_2(t)=\int_{-\infty}^{\infty}x_1(\tau)x_2(t-\tau)d\tau </math>
 
: <math> \quad=\int_{-\infty}^{\infty}Ae^{B\tau+C}u(D\tau+E)Fe^{G(t-\tau)+H}u(I(t-\tau)+J)d\tau </math>
 
: <math> \quad=AF\int_{-\infty}^{\infty}e^{B\tau+C+G(t-\tau)+H}u(D\tau+E)u(It-I\tau+J)d\tau </math>
 
: <math> where\;u(D\tau+E)=0\;,for\;D\tau+E<0\;\rightarrow\;\tau<\frac{-E}{D} </math>
 
: <math> \quad=AF\int_{\frac{-E}{D}}^{\infty}e^{\tau(B-G)+Gt+C+H}u(It-I\tau+J)d\tau </math>
 
: <math> where\;u(It-I\tau+J)=0\;,for\;It-I\tau+J<0\;\rightarrow\;\tau>t+\frac{J}{I} </math>
 
: <math> \;\;\;=AF\int_{\frac{-E}{D}}^{t+\frac{J}{I}}e^{\tau(B-G)+Gt+C+H}d\tau\cdot u(t+\frac{J}{I}+\frac{E}{D}) </math>
 
: <math> \;\;\;=AFe^{Gt+C+H}\int_{\frac{-E}{D}}^{t+\frac{J}{I}}e^{\tau(B-G)}d\tau\cdot u(t+\frac{J}{I}+\frac{E}{D}) </math>
 
: <math> \;\;\;=AFe^{Gt+C+H}\frac{1}{B-G}\left[e^{\tau(B-G)}\right]_{\frac{-E}{D}}^{t+\frac{J}{I}}\cdot u(t+\frac{J}{I}+\frac{E}{D}) </math>
 
: <math> \;\;\;=AFe^{Gt+C+H}\frac{1}{B-G}(e^{(t+\frac{J}{I})\cdot(B-G)}-e^{\frac{-E}{D}\cdot(B-G)})\cdot u(t+\frac{J}{I}+\frac{E}{D}) </math>
 
: <math> \;\;\;=\frac{AF}{B-G}(e^{Gt+CH+(t+\frac{J}{I})\cdot(B-G)}-e^{Gt+C+H-\frac{E}{D}(B-G)})\cdot u(t+\frac{J}{I}+\frac{E}{D}) </math>
 
: <math> \;\;\;=\frac{AF}{B-G}(e^{Bt+C+H+\frac{J}{I}(B-G)}-e^{Gt+C+H+\frac{E}{D}(G-B)})\cdot u(t+\frac{J}{I}+\frac{E}{D}) </math>
 
  
 
Example: Problem 2 on Fall 06 Midterm 1:
 
Example: Problem 2 on Fall 06 Midterm 1:
  
: <math> Let:\;x_1(t)=x(t)=e^{-2t}u(t) </math>
+
<math> Let:\;x_1(t)=x(t)=e^{-2t}u(t) \qquad x_2(t)=h(t)=u(t) </math>
: <math> \;\;\;\;x_2(t)=h(t)=u(t)\ </math>
+
 
: <math> Thus: </math>
+
<math> Thus:\;A=1,\;B=-2,\;C=0,\;D=1,\;E=0,\;F=1,\;G=0,\;H=0,\;I=1,\;J=0 </math>
: <math> A=1,\;B=-2,\;C=0,\;D=1,\;E=0,\;F=1,\;G=0,\;H=0,\;I=1,\;J=0 </math>
+
 
: <math> x(t)<em>h(t)=x_1(t)</em>x_2(t)\ </math>
+
<math> \begin{align} x(t)*h(t)&=x_1(t)*x_2(t) \\
: <math> \;\;\;=\frac{1\cdot1}{-2-0}(e^{-2t+0+0+\frac{0}{1}(-2-0)}-e^{0t+0+0+\frac{0}{1}(0--2)})\cdot u(t+\frac{0}{1}+\frac{0}{1}) </math>
+
&=\frac{1\cdot1}{-2-0}(e^{-2t+0+0+\frac{0}{1}(-2-0)}-e^{0t+0+0+\frac{0}{1}(0--2)})\cdot u(t+\frac{0}{1}+\frac{0}{1}) \\
: <math> \;\;\;=\frac{-1}{2}(e^{-2t}-1)\cdot u(t) </math>
+
&=\frac{-1}{2}(e^{-2t}-1)\cdot u(t) \\
: <math> \;\;\;=\frac{1}{2}(1-e^{-2t})\cdot u(t) </math>
+
&=\frac{1}{2}(1-e^{-2t})\cdot u(t) \end{align} </math>

Latest revision as of 11:04, 30 January 2011

Framework for computing the CT Convolution of two unit step exponentials

Let's take the convolution of the two most general unit-step exponentials in CT.

This solution can be very helpful in checking your work for convolutions of this form. Just plug in your numbers for the capital letters.

(I know this is kinda long, but it is very detailed to show the process of how to get to the general simplified solution.)

$ x_1(t)=Ae^{Bt+C}u(Dt+E) \qquad x_2(t)=Fe^{Gt+H}u(It+J) $

$ \begin{align} x_1(t)*x_2(t) &= \int_{-\infty}^{\infty}x_1(\tau)x_2(t-\tau)d\tau \\ &=\int_{-\infty}^{\infty}Ae^{B\tau+C}u(D\tau+E)Fe^{G(t-\tau)+H}u(I(t-\tau)+J)d\tau \\ &=AF\int_{-\infty}^{\infty}e^{B\tau+C+G(t-\tau)+H}u(D\tau+E)u(It-I\tau+J)d\tau; \;(u(D\tau+E)=0\;,for\;D\tau+E<0\;\rightarrow\;\tau<\frac{-E}{D}) \\ &=AF\int_{\frac{-E}{D}}^{\infty}e^{\tau(B-G)+Gt+C+H}u(It-I\tau+J)d\tau; \;(u(It-I\tau+J)=0\;,for\;It-I\tau+J<0\;\rightarrow\;\tau>t+\frac{J}{I}) \\ &=AF\int_{\frac{-E}{D}}^{t+\frac{J}{I}}e^{\tau(B-G)+Gt+C+H}d\tau\cdot u(t+\frac{J}{I}+\frac{E}{D}) \\ &=AFe^{Gt+C+H}\int_{\frac{-E}{D}}^{t+\frac{J}{I}}e^{\tau(B-G)}d\tau\cdot u(t+\frac{J}{I}+\frac{E}{D}) \\ &=AFe^{Gt+C+H}\frac{1}{B-G}\left[e^{\tau(B-G)}\right]_{\frac{-E}{D}}^{t+\frac{J}{I}}\cdot u(t+\frac{J}{I}+\frac{E}{D}) \\ &=AFe^{Gt+C+H}\frac{1}{B-G}(e^{(t+\frac{J}{I})\cdot(B-G)}-e^{\frac{-E}{D}\cdot(B-G)})\cdot u(t+\frac{J}{I}+\frac{E}{D}) \\ &=\frac{AF}{B-G}(e^{Gt+CH+(t+\frac{J}{I})\cdot(B-G)}-e^{Gt+C+H-\frac{E}{D}(B-G)})\cdot u(t+\frac{J}{I}+\frac{E}{D}) \\ &=\frac{AF}{B-G}(e^{Bt+C+H+\frac{J}{I}(B-G)}-e^{Gt+C+H+\frac{E}{D}(G-B)})\cdot u(t+\frac{J}{I}+\frac{E}{D}) \end{align} $


Example: Problem 2 on Fall 06 Midterm 1:

$ Let:\;x_1(t)=x(t)=e^{-2t}u(t) \qquad x_2(t)=h(t)=u(t) $

$ Thus:\;A=1,\;B=-2,\;C=0,\;D=1,\;E=0,\;F=1,\;G=0,\;H=0,\;I=1,\;J=0 $

$ \begin{align} x(t)*h(t)&=x_1(t)*x_2(t) \\ &=\frac{1\cdot1}{-2-0}(e^{-2t+0+0+\frac{0}{1}(-2-0)}-e^{0t+0+0+\frac{0}{1}(0--2)})\cdot u(t+\frac{0}{1}+\frac{0}{1}) \\ &=\frac{-1}{2}(e^{-2t}-1)\cdot u(t) \\ &=\frac{1}{2}(1-e^{-2t})\cdot u(t) \end{align} $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett