(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
(1-\frac{2 |t|}{\tau})p_\tau (t) \frac{\tau}{2} sinc^2 \frac{\tau \omega}{4 \pi} \frac{\tau}{2} sinc^2 ( \frac{\tau t}{4 \pi} ) 2 \pi (1-\frac{2|\omega|}{\tau})p_\tau (\omega)
Time Domain Fourier Domain
$x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega)e^{j \omega t}d \omega$ $X(j \omega)=\int_{-\infty}^\infty x(t) e^{-j \omega t}d t$
$1\$ $2 \pi \delta (\omega)$
$− 0.5 + u(t)\$ $\frac{1}{j \omega}\$
$\delta (t) \$ $1\$
$\delta (t-c)\$ $e − j \omega c$
$u(t)$ $\pi \delta(\omega)+\frac{1}{j \omega}$
$e ^{− bt}u(t)$ $\frac{1}{j \omega + b}$
$cos \omega_0 t$ $\pi [\delta ( \omega + \omega_0 ) + \delta ( \omega - \omega_0 )]$
cos(ω0t + θ) π[e − jθδ(ω + ω0) + ejθδ(ω − ω0)]?
sinω0t jπ[δ(ω + ω0) − δ(ω − ω0)]?
sin(ω0t + θ) jπ[e − jθδ(ω + ω0) − ejθδ(ω − ω0)]?
rect(\frac{t}{\tau}) \tau sinc \frac{\tau \omega}{2 \pi}
\tau sinc \frac{\tau t}{2 \pi} 2πpτ(ω)
   Note: sinc(x) = sin(x) / x ; pτ(t) is the rectangular pulse function of width τ


Note: Source courtesy Wikibooks.org

## Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett