Line 50: Line 50:
  
 
<math>y[n] = \frac{5}{3}\Big(\frac{1}{2}\Big)^n u[n] - \frac{2}{3}\Big(\frac{1}{5}\Big)^n u[n]</math>
 
<math>y[n] = \frac{5}{3}\Big(\frac{1}{2}\Big)^n u[n] - \frac{2}{3}\Big(\frac{1}{5}\Big)^n u[n]</math>
 +
 +
d)
 +
 +
<math>x[n] = \frac{1}{2}e^{j\frac{\pi}{2}\omega}+\frac{1}{2}e^{-j\frac{\pi}{2}\omega}</math>
 +
 +
guess for  <math class="inline">e^{j\omega_0n} \,</math>  : <math class="inline">\mathcal X (\omega) = 2\pi \delta (\omega-\omega_0)\,</math>
 +
 +
check <math class="inline">\frac{1}{2\pi}\int_0^{2\pi} 2\pi \delta (\omega-\omega_0)e^{j\omega n}d\omega = e^{j\omega_0n}</math>
 +
 +
but the answer needs to be periodic.  Apply to x[n],
 +
 +
<math>\mathcal X (\omega) = \frac{1}{2} \sum_{m=-\infty}^\infty 2\pi \delta (\omega-\frac{\pi}{2}+2\pi m)+\frac{1}{2} \sum_{m=-\infty}^\infty 2\pi \delta (\omega+\frac{\pi}{2}+2\pi m)</math>
 +
 +
for <math class="inline">0\le\omega\le 2\pi</math>
 +
 +
<math>\mathcal Y (\omega) = \pi \delta (\omega-\frac{\pi}{2}) \Big(\frac{1}{1-\frac{1}{2}e^{-j\omega}}\Big) + \pi \delta (\omega-\frac{3\pi}{2}) \Big(\frac{1}{1-\frac{1}{2}e^{-j\omega}}\Big)</math>
 +
 +
<math>y[n] = \frac{\pi}{2\pi}\int_0^{2\pi}\delta (\omega-\frac{\pi}{2}) \Big(\frac{1}{1-\frac{1}{2}e^{-j\omega}}\Big)e^{j\omega n}d\omega +\frac{\pi}{2\pi}\int_0^{2\pi}\delta (\omega-\frac{3\pi}{2}) \Big(\frac{1}{1-\frac{1}{2}e^{-j\omega}}\Big)e^{j\omega n}d\omega</math>
 +
 +
<math>y[n] = \frac{1}{2} \Big(\frac{e^{j\frac{\pi}{2} n}}{1-\frac{1}{2}e^{-j\frac{\pi}{2}}}\Big) + \frac{1}{2} \Big(\frac{e^{j\frac{3\pi}{2} n}}{1-\frac{1}{2}e^{-j\frac{3\pi}{2}}}\Big)</math>
 +
 +
--[[User:Cmcmican|Cmcmican]] 21:17, 8 March 2011 (UTC)
  
 
=== Answer 2  ===
 
=== Answer 2  ===

Revision as of 17:17, 8 March 2011


Practice Question on Causal LTI systems defined by a linear, constant coefficient difference equation

Consider the LTI system defined by the difference equation

$ y[n]-\frac{1}{2}y[n-1]=x[n]\ $

a) What is the frequency response of this system?

b) What is the unit impulse response of this system?

c) What is the system's response to the input $ x[n] = \left( \frac{1}{5}\right)^n u[n] \ $?

c) What is the system's response to the input $ x[n] =\cos \left(\frac{\pi}{2} n \right) \ $?


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

a)

$ \mathfrak F (y[n]-\frac{1}{2}y[n-1]) = \mathfrak F (x[n]) $

$ \mathcal Y (\omega) - \frac{1}{2}\mathfrak F (y[n-1]) = \mathcal X (\omega) $

$ \mathcal Y (\omega) - \frac{1}{2}e^{-j\omega} \mathcal Y (\omega) = \mathcal X (\omega) $

$ \mathcal Y (\omega) = \frac{1}{1-\frac{1}{2}e^{-j\omega}}\mathcal X (\omega) $

$ \mathcal H (\omega) = \frac{1}{1-\frac{1}{2}e^{-j\omega}} $

b)

$ h[n]=\mathfrak F ^{-1} (\mathcal H (\omega))= \mathfrak F ^{-1} \Big( \frac{1}{1-\frac{1}{2}e^{-j\omega}} \Big) $

$ use \mathfrak F (a^n u[n]) = \frac{1}{1-ae^{-j\omega}} $

$ h[n] = \Big(\frac{1}{2}\Big)^n u[n] $

c)

use table formula from last part

$ \mathcal X (\omega)= \frac{1}{1-\frac{1}{5}e^{-j\omega}} $

$ \mathcal Y (\omega)= \Big(\frac{1}{1-\frac{1}{2}e^{-j\omega}}\Big)\Big(\frac{1}{1-\frac{1}{5}e^{-j\omega}}\Big) = \Big(\frac{\frac{5}{3}}{1-\frac{1}{2}e^{-j\omega}}\Big) + \Big(\frac{\frac{-2}{3}}{1-\frac{1}{5}e^{-j\omega}}\Big) $

$ y[n] = \frac{5}{3}\Big(\frac{1}{2}\Big)^n u[n] - \frac{2}{3}\Big(\frac{1}{5}\Big)^n u[n] $

d)

$ x[n] = \frac{1}{2}e^{j\frac{\pi}{2}\omega}+\frac{1}{2}e^{-j\frac{\pi}{2}\omega} $

guess for $ e^{j\omega_0n} \, $  : $ \mathcal X (\omega) = 2\pi \delta (\omega-\omega_0)\, $

check $ \frac{1}{2\pi}\int_0^{2\pi} 2\pi \delta (\omega-\omega_0)e^{j\omega n}d\omega = e^{j\omega_0n} $

but the answer needs to be periodic. Apply to x[n],

$ \mathcal X (\omega) = \frac{1}{2} \sum_{m=-\infty}^\infty 2\pi \delta (\omega-\frac{\pi}{2}+2\pi m)+\frac{1}{2} \sum_{m=-\infty}^\infty 2\pi \delta (\omega+\frac{\pi}{2}+2\pi m) $

for $ 0\le\omega\le 2\pi $

$ \mathcal Y (\omega) = \pi \delta (\omega-\frac{\pi}{2}) \Big(\frac{1}{1-\frac{1}{2}e^{-j\omega}}\Big) + \pi \delta (\omega-\frac{3\pi}{2}) \Big(\frac{1}{1-\frac{1}{2}e^{-j\omega}}\Big) $

$ y[n] = \frac{\pi}{2\pi}\int_0^{2\pi}\delta (\omega-\frac{\pi}{2}) \Big(\frac{1}{1-\frac{1}{2}e^{-j\omega}}\Big)e^{j\omega n}d\omega +\frac{\pi}{2\pi}\int_0^{2\pi}\delta (\omega-\frac{3\pi}{2}) \Big(\frac{1}{1-\frac{1}{2}e^{-j\omega}}\Big)e^{j\omega n}d\omega $

$ y[n] = \frac{1}{2} \Big(\frac{e^{j\frac{\pi}{2} n}}{1-\frac{1}{2}e^{-j\frac{\pi}{2}}}\Big) + \frac{1}{2} \Big(\frac{e^{j\frac{3\pi}{2} n}}{1-\frac{1}{2}e^{-j\frac{3\pi}{2}}}\Big) $

--Cmcmican 21:17, 8 March 2011 (UTC)

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang