Line 1: Line 1:
 +
 +
[[Category:slecture]]
 +
[[Category:ECE662Spring2014Boutin]]
 +
[[Category:ECE]]
 +
[[Category:ECE662]]
 +
[[Category:pattern recognition]] 
 +
 +
<center><font size= 4>
 +
Bayes rule in practice: definition and parameter estimation
 +
</font size>
 +
 +
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student Chuohao Tang
 +
 +
Partly based on the [[2014_Spring_ECE_662_Boutin|ECE662 Spring 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].
 +
</center>
 +
----
 +
----
 
Bayes rule in practice: definition and parameter estimation
 
Bayes rule in practice: definition and parameter estimation
  
 
1) Bayes rule for Gaussian data
 
1) Bayes rule for Gaussian data
 +
 +
----
 +
----
 +
----
 +
==[[slecture_title_of_slecture_review|Questions and comments]]==
 +
 +
If you have any questions, comments, etc. please post them on [[slecture_title_of_slecture_review|this page]].
 +
----
 +
[[2014_Spring_ECE_662_Boutin|Back to ECE662, Spring 2014]]

Revision as of 06:43, 29 April 2014


Bayes rule in practice: definition and parameter estimation

A slecture by ECE student Chuohao Tang

Partly based on the ECE662 Spring 2014 lecture material of Prof. Mireille Boutin.



Bayes rule in practice: definition and parameter estimation

1) Bayes rule for Gaussian data




Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE662, Spring 2014

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett