Line 36: Line 36:
 
\begin{align}
 
\begin{align}
  
f(x) &= \oint_S g(x) dx \\
+
 
&= \int_a^b g(x) dx \\
+
&= \frac{\mu_0}{2 \pi a \cdot b}\\
+
& = \int_a^{-\infty} jzdhfbvzjhvz dt \\
+
& = \sum_{k=0}^{-\infty} kzdjfgdzjkfg \\
+
 
x[n] = 1 + sin(\frac{2\pi}{8}n) + 3cos(\frac{2\pi}{8}n), N=8 --> \omega_{o} = \frac{2\pi}{8} \\
 
x[n] = 1 + sin(\frac{2\pi}{8}n) + 3cos(\frac{2\pi}{8}n), N=8 --> \omega_{o} = \frac{2\pi}{8} \\
 
x[n] = -j^n, \omega_o = \frac{\pi}{2} \\
 
x[n] = -j^n, \omega_o = \frac{\pi}{2} \\

Revision as of 21:05, 25 April 2019


Fourier Series Coefficients

A project by Kalyan Mada



Introduction

I am going to compute some fourier series coefficients.


CT signals

$ \begin{align} \bar x(t) = sin(6 \pi t), \omega_{o} = 6\pi \\ x(t) = 2 + cos(6 \pi t) - \frac{1}{2} sin(3 \pi t), \omega_{o} = 3\pi \\ x(t) = cos(\frac{2\pi}{10}t), \omega_{o} = \frac{\pi}{10} \\ x(t) = \begin{cases} 3, & \text{if}\ a=1 \\ 0, & \text{otherwise} \end{cases} \end{align} $


DT signals

$ \begin{align} x[n] = 1 + sin(\frac{2\pi}{8}n) + 3cos(\frac{2\pi}{8}n), N=8 --> \omega_{o} = \frac{2\pi}{8} \\ x[n] = -j^n, \omega_o = \frac{\pi}{2} \\ x[n] = \begin{cases} sin(\pi t), & \text{if}\ a=1 \\ 0, & \text{otherwise} \end{cases}\\ x[n] = \begin{cases} 4, & \text{if}\ a=1 \\ -4, & \text{otherwise} \end{cases} \end{align} $



Questions and comments

If you have any questions, comments, etc. please post them here.


[to 2019 Spring ECE 301 Boutin]


Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett