Line 42: Line 42:
 
& = \sum_{k=0}^{-\infty} kzdjfgdzjkfg \\
 
& = \sum_{k=0}^{-\infty} kzdjfgdzjkfg \\
 
x[n] = 1 + sin(\frac{2\pi}{8}n) + 3cos(\frac{2\pi}{8}n), N=8 --> \omega_{o} = \frac{2\pi}{8} \\
 
x[n] = 1 + sin(\frac{2\pi}{8}n) + 3cos(\frac{2\pi}{8}n), N=8 --> \omega_{o} = \frac{2\pi}{8} \\
 +
x[n] = -j^n, \omega_o = \frac{\pi}{2}
 
x(t) =
 
x(t) =
 
  \begin{cases}
 
  \begin{cases}

Revision as of 21:02, 25 April 2019


Fourier Series Coefficients

A project by Kalyan Mada



Introduction

I am going to compute some fourier series coefficients.


CT signals

$ \begin{align} \bar x(t) = sin(6 \pi t), \omega_{o} = 6\pi \\ x(t) = 2 + cos(6 \pi t) - \frac{1}{2} sin(3 \pi t), \omega_{o} = 3\pi \\ x(t) = cos(\frac{2\pi}{10}t), \omega_{o} = \frac{\pi}{10} \\\ x(t) = \begin{cases} 3, & \text{if}\ a=1 \\ 0, & \text{otherwise} \end{cases} \end{align} $


DT signals

$ \begin{align} f(x) &= \oint_S g(x) dx \\ &= \int_a^b g(x) dx \\ &= \frac{\mu_0}{2 \pi a \cdot b}\\ & = \int_a^{-\infty} jzdhfbvzjhvz dt \\ & = \sum_{k=0}^{-\infty} kzdjfgdzjkfg \\ x[n] = 1 + sin(\frac{2\pi}{8}n) + 3cos(\frac{2\pi}{8}n), N=8 --> \omega_{o} = \frac{2\pi}{8} \\ x[n] = -j^n, \omega_o = \frac{\pi}{2} x(t) = \begin{cases} 3, & \text{if}\ a=1 \\ 0, & \text{otherwise} \end{cases}\\ x(t) = \begin{cases} 3, & \text{if}\ a=1 \\ 0, & \text{otherwise} \end{cases} \end{align} $



Questions and comments

If you have any questions, comments, etc. please post them here.


[to 2019 Spring ECE 301 Boutin]


Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang