Tan Dang

1 Problem 2-b

Assuming 2a. Assuming $q>2$. If $q=2$, this is trivially true.
Let $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ be all the primes of the form $q b+1$. Let $\alpha=\Pi p_{i}$. Observe that $\alpha=M q+1$ for some M.

Let p be a prime that divides $f_{q}(\alpha)$.

$$
f_{q}(\alpha)=\frac{\left(\Pi p_{i}\right)^{q}-1}{\alpha-1}
$$

Since no p_{i} divides $\left(\Pi p_{i}\right)^{q}-1$, the prime p must be q. Hence, this implies $f_{q}(\alpha)=q^{m}$ for some m. Then

$$
\begin{gathered}
\alpha^{q}-1=q^{m}(M q-1) \Rightarrow(M q+1)^{q}-1=q^{m}(M q+1-1) \\
(M q)^{q}+q(M q)^{q-1}+\binom{q}{2}(M q)^{q-2}+\ldots+\binom{q}{2}(M q)^{2}+q M q+1-1=q^{m} M q \\
(M q)^{q}+q(M q)^{q-1}+\binom{q}{2}(M q)^{q-2}+\ldots+\binom{q}{2}(M q)^{2}+q M q=q^{m} M q \\
(M q)^{q-1}+q(M q)^{q-2}+\binom{q}{2}(M q)^{q-3}+\ldots+\binom{q}{2}(M q)^{2}+q=q^{m} \\
q K+1=q^{m-1}
\end{gathered}
$$

(every term in the LHS except for q has at least a factor of q^{2} since $q>2$.) This implies that $m=1$. Hence $f_{q}\left(\Pi p_{i}\right)=q$. But we can let $\alpha=p_{1}^{2} p_{2} \ldots p_{n}$ and the same argument holds, this gives the contradiction. QED.

