Tan Dang

1 Problem 2-b

Assuming 2a. Assuming q > 2. If q = 2, this is trivially true.

Let $\{p_1, p_2, \ldots, p_n\}$ be all the primes of the form qb + 1. Let $\alpha = \prod p_i$. Observe that $\alpha = Mq + 1$ for some M.

Let p be a prime that divides $f_q(\alpha)$.

$$f_q(\alpha) = \frac{(\Pi p_i)^q - 1}{\alpha - 1}$$

Since no p_i divides $(\Pi p_i)^q - 1$, the prime p must be q. Hence, this implies $f_q(\alpha) = q^m$ for some m. Then

$$\alpha^{q} - 1 = q^{m}(Mq - 1) \Rightarrow (Mq + 1)^{q} - 1 = q^{m}(Mq + 1 - 1)$$

$$(Mq)^{q} + q(Mq)^{q-1} + \binom{q}{2}(Mq)^{q-2} + \dots + \binom{q}{2}(Mq)^{2} + qMq + 1 - 1 = q^{m}Mq$$

$$(Mq)^{q} + q(Mq)^{q-1} + \binom{q}{2}(Mq)^{q-2} + \dots + \binom{q}{2}(Mq)^{2} + qMq = q^{m}Mq$$

$$(Mq)^{q-1} + q(Mq)^{q-2} + \binom{q}{2}(Mq)^{q-3} + \dots + \binom{q}{2}(Mq)^{2} + q = q^{m}$$

$$qK + 1 = q^{m-1}$$

(every term in the LHS except for q has at least a factor of q^2 since q > 2.) This implies that m = 1. Hence $f_q(\prod p_i) = q$. But we can let $\alpha = p_1^2 p_2 \dots p_n$ and the same argument holds, this gives the contradiction. QED.