(16 Besic Systems Properties
Twesday, August 28, 2007
Memoryless (with memory
memoryless
$$\Rightarrow$$
 if for anytime to the output at
to depends only on the input at to (x(1/2))
ex. y(t) = x(t) + x(t-1) is not memoryless
y(t) = $\partial x(t)$ is memoryless
y(t) = $\partial x(t)$ is memoryless
y(t) = $(t-1) x(t)$ is memoryless
y(t) = $\int_{-\infty}^{t} x(-1) dt$ is memoryless

Invertigi

y(4):
$$\chi(4): \chi(4): \chi(4)$$

Causality

$$\frac{\text{DeF}}{\text{PeF}} = A \text{ system is causal if the oilpit only depends on
the input at the present time & post time. In other words
the outpit at to is dependent on T=to or ty(t) = x(t+1) - not \text{ causal}$$

$$y(t) = d = -\text{ causal}$$

$$y(t) = \int_{t}^{\infty} x(t)$$

Stability
Def: A system is state if burder inply yield bunder offets
i.e. if x(1) is bunched, then y(1) is also bounded

$$\exists \ \epsilon > 0$$

exist
Time Investmence
Def 1: A system is called time investment (TI) if for any input
signal x(1) and for anytime to the origin to the shifted
input $\dot{x}(t-t_0)$ is the shifted output y(1-t_0).
Def 2'. If $x(t_0) \rightarrow 5y_0 \rightarrow 9(t_0)$
then
 $x(t-t_0) \rightarrow 5y_0 \rightarrow 9(t_0)$
The cased $x(t_0) \rightarrow 5y_0 \rightarrow 9(t_0)$
yields the some output of $x(t_0) \rightarrow 5y_0 \rightarrow 9(t_0)$
 $y_0 = 10$ $x(t_0)$ TI
Ex 1. $y(t_0) = 10 x(t_0)$ TI

$$y(t) = (\chi(t))^{2} \Rightarrow \chi(t) \Rightarrow \overline{TT} = \overline{TT} \Rightarrow z(t)z = (\chi(t))^{2}$$

$$= \chi(t)z = \overline{tyz} \Rightarrow z(t)z = \overline{tyz} \Rightarrow z(t)z = (\chi(t))^{2}$$

$$= \chi(t)z = \overline{tyz} \Rightarrow (\chi(t)z) = (\chi(t)z)z = (\chi(t)z) = (\chi(t)z)z = (\chi($$

 $y(t) = \pm \kappa(t)$

$$x(t) = \overline{TD} = y(t) = x(t-t_0) = \overline{555} = z(t) + y(t)$$

= + x(t-t_0)
 $x(t) = y(t) = x(t) + \overline{TT}$
 $y(t) = y(t) + x(t) = \overline{TD} = z(t) = y(t-t_0)$
= (t-t_0) x (t-t_0)

Linearity

Def 1: A system is "linear" if for any combination $a_3b_5 \in \mathbb{C}$ and for any inputs $x_1(t)$, $x_2(t)$ yielding $y_1(t)$ and $y_2(t)$ the system's response to $ax_1(t) + bx_2(t)$ is $a_3(t) + bx_3(t)$

Def 2: IP
$$x_i(H) \rightarrow \Box \rightarrow y_i(H)$$

 $k_i(H) \rightarrow \Box \rightarrow y_i(H)$
 $\Rightarrow a x_i(H) + b x_i(H) \rightarrow \Box \rightarrow cy_i(H) + b y_i(H)$
 $\forall a_j b \in A$
Def 3: $x_i(H) \rightarrow \Box \rightarrow \emptyset$

