1. Let $g \in C^{1}(\mathbb{R})$. Show g takes sets of measure zero to sets of measure zero.
2. If E_{1}, E_{2} are measurable sets in \mathbb{R}, show $E_{1} \times E_{2}$ is measurable in \mathbb{R}^{2}.
3. Let f be continuous on $[1, \infty)$ and $\lim _{x \rightarrow \infty} f(x)=0$. Suppose that $\int_{1}^{\infty} f(x) x^{n} d x=0$ for $n=-2,-3, \ldots$. Does it follow that $f \equiv 0$?
4. Given $(X, \mathcal{M}, \mu), \mu(X)<\infty$, and let $f_{n} \rightarrow f$ pointwise on X, f_{n} : $X \rightarrow \mathbb{R}$ measurable. Assume that for each $\epsilon>0$, there is a $\delta=\delta(\epsilon)$ such that $E \in \mathcal{M}$ and $\mu(E) \leq \delta$ implies that $\left|\int_{E} f_{n} d \mu\right| \leq \epsilon$. Show that $f_{n} \rightarrow f$ in L^{1}.
5. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X)=1$. Let $E_{j} \in \mathcal{M}, j=$ $1, \ldots, n$. If every $x \in X$ is in at least k of these sets, show that there exists $1 \leq j_{0} \leq n$ such that $\mu\left(E_{j_{0}}\right) \geq \frac{k}{n}$.
6. Let $f \in L^{1}\left(I_{0}\right), f \geq 0$, and let for each positive integer n,

$$
f_{n}(x)=\left\{\begin{array}{ll}
n, & f(x) \geq n \\
f(x), & f(x)<n
\end{array} .\right.
$$

Show that

$$
\int_{0}^{1} \log f_{n} d x \rightarrow \int_{0}^{1} \log f d x
$$

Note that the integrals could be $-\infty$.
7. Let $A \subset \mathbb{R}, A$ measurable, and show that $\forall r \in[0,|A|], \exists E \subset A$ with $|E|=r$. Can it be generalized to \mathbb{R}^{n} ?
8. Evaluate the following limits and fully justify your answers:
(a) $\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1-\frac{x}{n}\right)^{n} e^{x / 2} d x$
(b) $\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{n}{e^{x}+n^{2} x} d x$
9. Let $\left\{f_{n}\right\}$ be a sequence of nonnegative functions in $L^{1}([0,1])$ with the property that

$$
\int_{0}^{1} f_{n}(t) d t=1 \text { and } \int_{1 / n}^{1} f_{n}(t) d t \leq \frac{1}{n}
$$

for all n. Define $h(x)=\sup _{n} f_{n}(x)$. Prove that $h \notin L^{1}([0,1])$.
10. Let $1>\epsilon_{j}>0, j=1,2, \ldots$. Show that $\sum \epsilon_{j}<\infty$ is necessary and sufficient so that $\sum \chi_{A_{j}}(x)<\infty$ a.e. whenever $\left\{A_{j}\right\}$ is a sequence of Borel sets in I_{0} with $m\left(A_{j}\right)=\epsilon_{j}$.

