Midterm Examination 1 ECE 301 Division 1, Spring 2007 Instructor: Mimi Boutin

Instructions:

- 1. Wait for the "BEGIN" signal before opening this booklet. In the meantime, read the instructions below and fill out the requested info.
- 2. You have 50 minutes to complete the 5 questions contained in this exam, for a total of up to 80 points. When the end of the exam is announced, you must stop writing immediately. Anyone caught writing after the exam is over will get a grade of zero.
- 3. This booklet contains 9 pages. The last three pages contain a table of formulas and properties. You may tear out these three pages **once the exam begins**.
- 4. This is a closed book exam. The use of calculators is prohibited. Cell phones, pagers, and all other electronic communication device are strictly forbidden. Ipods and PDAs are not allowed either.

Name:_____

Email:

Signature:

Itemized Scores

Problem 1:

Problem 2:

Problem 3:

Problem 4:

Problem 5:

Total:

(15 pts) **1.** Compute the energy E_{∞} and the power P_{∞} for the CT signal

$$x(t) = e^{j(2t + \frac{\pi}{4})}.$$

(Justify your answer.)

(15 pts) **2.** An LTI system has unit impulse response h[n] = 3u[n]. Compute the system's response to the input $x[n] = \left(\frac{1}{2}\right)^{n-1} u[n]$. (Justify your answer.)

(20 pts) **3.** Consider the system whose input x(t) is related to the output y(t) by the equation

$$y(t) = x(t-3) + x(3-t).$$

a) Check all properties that hold for this system. (No justification needed.)

memoryless	
linear	
causal	
stable	

b) Is the above system time invariant? Answer yes/no and justify your answer.

(15 pts) 4. Suppose we are given the following information about a signal x[n]:

- 1. x[n] is a real and even signal.
- 2. x[n] has period N = 10 and Fourier coefficients a_k .
- 3. $a_{11} = 5$.
- 4. $\frac{1}{10} \sum_{n=0}^{9} |x[n]|^2 = 50.$

Find x[n]. (Justify your answer.)

(15 pts) 5. Consider a continuous-time LTI system whose frequency response is $f^{\infty} = sin(A_{i,j})$

$$H(j\omega) = \int_{-\infty}^{\infty} h(t)e^{-j\omega t}de = \frac{\sin(4\omega)}{\omega}.$$

If the input to this system is a periodic signal

$$x(t) = \begin{cases} 1, & 0 \le t < 4\\ -1, & 4 \le t < 8 \end{cases}$$

with period T = 8, determine the corresponding system output y(t).

Facts and Formulas

1 CT Signal Energy and Power

$$E_{\infty} = \int_{-\infty}^{\infty} |x(t)|^2 dt$$
 (1)

$$P_{\infty} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$
 (2)

2 Fourier Series of CT Periodic Signals with period T

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\left(\frac{2\pi}{T}\right)t}$$
(3)

$$a_k = \frac{1}{T} \int_0^T x(t) e^{-jk \left(\frac{2\pi}{T}\right) t} dt$$
(4)

3 Properties of CT Fourier Series

Let x(t) be a periodic signal with fundamental period T and fundamental frequency ω_0 . Let y(t) be another periodic signal with the same fundamental period T and fundamental frequency ω_0 . Denote by a_k and b_k the Fourier series cofficients of x(t) and y(t) respectively.

	Signal		FT	
Linearity:	$\alpha x(t) + \beta y(t)$		$\alpha a_k + \beta b_k$	(5)
Time Shifting:	$x(t-t_0)$		$e^{-jk\omega_0t_0}a_k$	(6)
Conjugation:	$x^*(t)$		a^*_{-k}	(7)
	x(t) real and even		a_k real and even	(8)
	x(t) real and odd		a_k pure imaginary and odd	
				(9)
		20		

Parseval's Relation:
$$\frac{1}{T} \int_{-\infty}^{\infty} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2$$
(10)

4 DT Signal Energy and Power

$$E_{\infty} = \sum_{n=-\infty}^{\infty} |x[n]|^2 \tag{11}$$

$$P_{\infty} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$
(12)

5 Fourier Series of DT Periodic Signals with period N

$$x[n] = \sum_{k=0}^{N-1} a_k e^{jk \left(\frac{2\pi}{N}\right)n}$$
(13)

$$a_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk \left(\frac{2\pi}{N}\right)n}$$
(14)

6 Properties of DT Fourier Series

Let x[n] be a periodic signal with fundamental period N and fundamental frequency ω_0 . Let y[n] be another periodic signal with the same fundamental period N and fundamental frequency ω_0 . Denote by a_k and b_k the Fourier series cofficients of x(t) and y(t) respectively.

	Signal	FT	
Linearity:	$\alpha x[n] + \beta y[n]$	$\alpha a_k + \beta b_k$	(15)
Time Shifting:	$x[n-n_0]$	$e^{-jk\omega_0n_0}a_k$	(16)
Conjugation:	$x^*[n]$	a^*_{-k}	(17)
	x[n] real and even	a_k real and even	(18)
	x[n] real and odd	a_k pure imaginary and odd	
			(19)

Parseval's Relation:
$$\frac{1}{N} \sum_{n=0}^{N-1} |x(t)|^2 dt = \sum_{k=0}^{N-1} |a_k|^2$$
 (20)

7 Properties of LTI systems

- LTI systems commute.
- The response of an LTI system with unit impulse response h to a signal x is the same as the response of an LTI system with unit impulse response x to the signal h.
- An LTI system consisting of a cascade of k LTI systems with unit impulse responses h_1, h_2, \ldots, h_k respectively, is the same as an LTI system with unit impulse response $h_1 * h_2 * \ldots * h_k$.
- The response of a CT LTI system with unit impulse response h(t) to the signal e^{st} is $H(s)e^{st}$ where $H(s) = \int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau$.
- The response of a DT LTI system with unit impulse response h[n] to the signal z^n is $H(z)z^n$ where $H(z) = \sum_{k=-\infty}^{\infty} h[k]z^{-k}$.