
 1

Question1:

Fisher linear discriminant analysis (FDA) is one of the common parametric methods. It looks

for directions that are efficient for discrimination. Projection onto one direction w, two-class

problem is defined below:

(1) Samples: n d-dimensional vectors nxx1 , consisting of two subsets 21 ,DD

(2) Projected samples: xy Tω= , two subsets 21 ,YY

(3) Criterion: maximize the Fisher linear discriminant

()
2

2

2

1

2

21

~~

~~

SS

mm
J

+

−
=ωv

where =1
~m mean of 1Yy ∈ , =2

~m mean of 2Yy ∈ , =2

1

~
S scatter

of
2

11
1

)~(∑ ∈
−=

Yy
myY , =2

2

~
S scatter of ∑ ∈

−=
2

2

22)~(
Yy

myY

()
ωω
ωωω vv

vv
v

W

T

B

T

S

S

SS

mm
J =

+

−
=

2

2

2

1

2

21

~~

~~

()()TT

B mmmmS 2121

vvvv −−= is the between-class scatter matrix

, and
2

2

2

1 SSSw += is the within-class scatter matrix, where ∑
∈

−−=
iDx

t

iii mxmxS))((
vv

Maximizing the Fisher linear discriminant—the linear function generating the maximum ratio

of between-class scatter to within-class scatter, yields the optimal projection (a projection that

generates large separation between the projected means while reducing the scatter of the

projected data). ()21

1
mmSw

vvv −= −∗ω

The main purpose of this question is to investigate the performance of the classifier using

()21

1
mmSw

vvv −= −∗ω as the projection versus using ()21 mmI

vvv −=ω (setting wS as the identity

matrix). The following steps were followed for programming:

(1) Produced correlated Gaussian data sets from class 1 and class 2. Data from

class 1 and class 2 has the different means (∆+= 12 mm
vv

to generate separation

between the classes. The mean of class is set as






=

2
,2,

2

3
,1,

2

1
1

Nm K
v

, but

the covariance is the same (which means 21 ∑=∑).

 2

(2) Compute the optimal projection ()21

1
mmSw

vvv −= −∗ω by using above equation

and criteria.

(3) Apply the projection to the data: by
vvv =∗ω .

(4) Find the threshold to classify the data:
2

~~
21

0

mm −=ω for Gaussian data from

two classes with equal covariance matrices.

(5) Classify the ith data point as from class 1 if 0ω>ib , else from class 2. Count

number of true and false classifications.

(6) Apply the same procedure for ()21 mmI

vvv −=ω on same data.

(7) Compare the result of classification using ∗ωv versus using Iωv .

Three experiments were applied to evaluate the result of the two different methods (∗ωv

versus Iωv): (1) performance as a function of separation between two classes, (2) performance

as a function of feature vector dimension size, and (3) performance as a function of number

of samples.

Experiment 1: Separation

From the above step, ∆+= 12 mm
vv

has been set. To evaluate performance as a function of

separation between classes, ∆ was varied from 0 to 5 with interval 0.05, while the feature

vector size is kept at N = 5 and the number of samples for each class is 10000. Figure 1

shows the performance as a function of data separation. ∗ωv generates more correct

classifications than using Iωv (setting wS as the identity matrix) at all separations except the

situation when there is no separation between the means (∆=0). As to be observed, at very

small (say below 0.5) and very large separations (say above 4.5), the performance of both

methods are somewhat similar – but at intermediate separations (say between 1.5 and 3),

method ∗ωv is better in accuracy to method Iωv by around 10%. It can be expected, as when the

data has no separation, no method will achieve more than chance accuracy, no matter how

good the algorithm applies. And when there is a very large separation, any good method

should produce great classification.

 3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
50

55

60

65

70

75

80

85

90

95

100

%
 C
o
rr
e
c
t
C
la
s
s
if
ic
a
ti
o
n

Separation of Data

Performance as a function of data separation

ω*=S
w
- 1(m

1
-m

2
)

ωI
=(m

1
-m

2
)

Figure 1: Performance as a function of data separation

Experiment 2: Feature vector dimension size (N)

Feature vector dimension size N was varied from 2 up to 100, while the separation is set at ∆

= 1.5 and the number of samples for each class is 10000. Figure 2 displays the results,

showing that the performance of ∗ωv is better to that of method Iωv when the dimension of

feature vector goes higher. The difference of the accuracy is up to 10% when the dimension

of the feature vector is above 25. Also, an increase in dimension size when N is small

([2:2:40]) results in a big increase in accuracy for both algorithms. However, an additional

increase in dimension size when N is large ([50:10:100]) results in insignificant improvement

in accuracy for both algorithms

 4

0 10 20 30 40 50 60 70 80 90 100
76

78

80

82

84

86

88

90

92

94

96

%
 C
o
rr
e
c
t
C
la
s
s
if
ic
a
ti
o
n

Feature Vector Dimension Size (N)

Performance as a function of feature vector dimension size

ω*=S
w
- 1(m

1
-m

2
)

ωI
=(m

1
-m

2
)

Figure 2: Performance as a function of feature vector dimension size (N)

Experiment 3: Data sample size (M)

To evaluate performance as a function of data sample size, number of samples M for each

class was different (from 100 to 10000), while the separation is set at ∆ =1.5, and the feature

vector dimension size is 5. Figure 3 illustrates the results. As to be observed, while method
∗ωv outtakes Iωv at all sample sizes, neither method presented an increase in accuracy as

sample size grows.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
74

76

78

80

82

84

86

88

90

92

%
 C
o
rr
e
c
t
C
la
s
s
if
ic
a
ti
o
n

Number of Samples (M)

Performance as a function of data sample size

ω*=S
w
- 1(m

1
-m

2
)

ωI
=(m

1
-m

2
)

Figure 3: Performance as a function of data sample size (M)

 5

Discussion of Results

In all the simulations discussed above, method ∗ωv accomplished better performance over Iωv .

While the simulations by no means cover all possible cases, the results do show a large

degree of certainty that ∗ωv is better. From the Fisher discriminant

()
ωω
ωωω vv

vv
v

W

T

B

T

S

S

SS

mm
J =

+
−

=
2

2

2

1

2

21

~~

~~
. Maximizing ()ωvJ finds the projection ∗ωv that increases the

separation between the means of the projected data as well as reducing the within-class

scatter of the data to produce minimal overlap between classes. On the contrary, the

projection ()21 mmI

vvv −=ω does not account for within-class scatter – resulting in a sub-

optimal projection that while separating the means of the projected data, does not look for

optimizing the variance/scatter of the projected data. Thus, method ∗ωv can be predicated to

accomplish better performance than method Iωv .

Question2:

Neural Network:

Design a classifier using the neural network approach versus the support vector machine.

The neural network method used in this report is part of the Neural Network Toolbox in

Matlab (The Mathworks). Particularly, the following functionalities were used for neural

network classification:

(1) net = newpnn(P, T, Sread): Implements a probabilistic neural network (PNN; a kind

of radial basis network suitable for classification problems) that is suitable for

classification. The newpnn function creates a two layer network by calling on a

variety of functions from the Neural Network Toolbox. The first layer has radbas()

neurons, and calculates the weighted inputs with dist() and its net input with

netprod(). The second layer has compet() neurons, and calculates its weighted input

with dotprod() and its net inputs with netsum(). The main function newpnn() accepts

an input matrix P of input vectors and an input matrix T of target class vectors, and

returns a new probabilistic network.

(2) a = sim(net,P): simulate a Simulink model. It uses the new neural network designed

by newpnn() to classify data matrix P.

To evaluate the performance of this probabilistic neural network, a set of training data was

used to design a new neural data, and a separate set testing data was used to compute the

accuracy of the algorithm.

Support Vector Machine:

The support vector machine (SVM) algorithm utilized in this report is authored by

Mangasarian and Musicant in the department of computer sciences at the University of

Wisconsin. The algorithm is named Lagrangian Support Vector Machines (LSVM) and is

 6

freely available online at http://www.cs.wisc.edu/dmi/lsvm/. The technical report detailing

LSVM is also available online from ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-06.ps.

Mangasarian and Musicant developed an implicit Lagrangian for the dual of a simple

reformulation of the standard quadratic program of a linear support vector machine, leading

to the minimization of an unconstrained differentiable convex function with dimensionality

equal to number of classified points. The minimization problem is solved by a linearly

convergent Lagrangian support vector machine algorithm, requiring the inversion at the

outset of a single matrix with the order of dimensionality equal to the original input space

plus one. Classification was performed by training the LSVM – its accuracy was assessed

with a separate set of testing data.

Three experiments were applied to evaluate and compare the performance of PNN and

LSVM: (1) performance as a function of separation between two classes, (2) performance as

a function of feature vector dimension size, and (3) performance as a function of number of

samples.

Experiment 1: Separation

Recall that ∆+= 12 mm
vv

. To evaluate performance as a function of separation between classes,

∆ was varied from 0 to 5 ([0:0.05:5]), while the feature vector size is kept at N = 5 and the

number of samples for each class is 2500. Half the sample from each class was used as

training data, and the other half utilized as testing data. Figure 4 shows the results of this

simulation. As to be observed from Figure 4, LSVM achieves better accuracy with small

separations (< 1.2), PNN overtakes LSVM in accuracy at approximately ∆ = 1.2. While PNN

almost accomplishes perfect accuracy at ∆ = 4, LSVM only has an accuracy of less than 90%.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
40

50

60

70

80

90

100

%
 C
o
rr
e
c
t
C
la
s
s
if
ic
a
ti
o
n

Separation of Data

Performance as a function of data separation

PNN

LSVM

Figure 4: Performance as a function of data separation

 7

Experiment 2: Feature vector dimension size (N)

In this experiment, feature vector dimension size N was varied from 1 to 40, while the

separation is set at ∆ = 1.5 and the number of samples for each class is 2500 (half used as

training data, remaining half used as testing data). Figure 5 is the results, showing that while

PNN achieves better performance at low dimension sizes (< 12), but it fails at higher

dimension sizes and only accomplishes chance accuracy. LSVM, on the contrary, gradually

improves in accuracy as feature vector dimension size goes higher.

0 5 10 15 20 25 30 35 40
50

55

60

65

70

75

80

85

90

%
 C
o
rr
e
c
t
C
la
s
s
if
ic
a
ti
o
n

Feature Vector Dimension Size (N)

Performance as a function of feature vector dimension size

PNN

LSVM

Figure 5: Performance as a function of feature vector dimension size (N)

Experiment 3: Data sample size (M)

In this experiment, the number of samples M for each class was varied from 100 to 2500

while the separation is set at ∆ = 1.5 and the feature vector dimension size (N) is 4. Half of

the samples (M/2) were used for training and the rest for testing. Figure 6 shows that PNN

consistently achieves better accuracy than LSVM at the given separation and dimension size

4, though increasing sample size past around 1000 does not increase accuracy for either

method. Figure 7 shows the results, showing that PNN achieves better accuracy than LSVM

in most of the given separation and dimension size 5, though increasing sample size past

around 1000 does not increase accuracy for either method. It is consistent with the

observation in experiment 2 which indicates LSVM gradually improves in accuracy as

feature vector dimension size goes higher while PNN performs worse accuracy in higher

feature vector dimension.

 8

0 500 1000 1500 2000 2500
68

70

72

74

76

78

80

82

84

%
 C
o
rr
e
c
t
C
la
s
s
if
ic
a
ti
o
n

Number of Samples (M)

Performance as a function of data sample size

PNN

LSVM

Figure 6: Performance as a function of data sample size (M) with N=4

0 500 1000 1500 2000 2500
68

70

72

74

76

78

80

%
 C
o
rr
e
c
t
C
la
s
s
if
ic
a
ti
o
n

Number of Samples (M)

Performance as a function of data sample size

PNN

LSVM

Figure 7: Performance as a function of data sample size (M) with N=5

Experiment 4: Distribution

To evaluate performance of LSVM and PNN for data with different distributions, Gaussian,

Exponential, and Uniform random data were generated. Number of samples M for each class

was 2500, the separation of the means was set at ∆ = 1.5, and feature vector dimension size

was 5. Table 1 showed that PNN achieved better accuracy for the Gaussian and exponential

data. Both methods achieved chance accuracy for the uniformly distributed data.

 9

 Gaussian Exponential Uniform

PNN 77.44% 74.80% 48.16%

LSVM 74.24% 73.20% 48.88%

Table 1: Accuracy of PNN and LSVM with different distributions with N=5

From the simulations conducted above, both PNN and LSVM are shown to have some

strengths and weaknesses. PNN outperforms LSVM when the separation is large and feature

vector dimension size is small. PNN fails with large feature vector dimension sizes, while

LSVM shows continued improvement in accuracy with increasingly large dimension sizes.

PNN and LSVM are two specific algorithms examined here, so the conclusion should not be

generalized to all support vector machines and neural networks. Accuracy is expected to vary

depending on the robustness of each algorithm.

Question 3

This question investigates applying the methods of Parzen windows, K-nearest neighbors,

and nearest neighbor to classification.

Parzen Windows

Parzen windows classification is a technique for nonparametric density estimation, which can

also be used for classification. Using a given window function, this technique approximates

the distribution of a given training set using a linear combination of window centered at a

observed point 0x
v
to compute and sum the contribution from each point of the training data set.

Applied to classification, a test point is labeled by using the window function to compute a

weighted mean of the contribution from the training points in each of the classes. The test

point is labeled to be from the class with the maximum weighted mean. While the choice of a

window function is important, the choice of a sensible window side-length is crucial to

accurate density estimation and classification. A small window length may lead to sharp

behavior in the density estimate while an excessive large window length may average out the

details of the data’s underlying distribution. To simulate the effect of window length on the

density estimate, the following steps were taken:

• Generate M=5000 samples from a Uniform distribution ()1,0~UX .

• Use a given Uniform window of length h

• Visualize the density estimate as a function of h and x using mesh()

• Compute the mean squared error (MSE) of the density estimate for each window size

h using the known underlying Uniform distribution

• Repeat procedure with data from a univariate Gaussian distribution ()1,5.0~ NX .

 10

-2 -1 0 1 2 3

0.2
0.4

0.6
0.8

0

0.5

1

x

Density estimate of Uniformly Distributed data

window size

p
e
s
t(
x
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

window size

M
S
E

MSE at given window length

Figure 8: Density estimate as a function of window length for Uniform data

Figure 8 shows the density estimate of a data set generated from the uniform distribution. As

can be observed, with a large window size, the density estimate starts to appear Gaussian

(partly because the window function is Gaussian). The minimum MSE occurs when h=0.065.

If the underlying distribution is known, perhaps a window function of the shape of that

particular probability density function with an appropriate window size would generate the

best density estimate. However, in reality, the underlying distribution is complex and barely

known, and thus a generic Gaussian window function is generally used.

As can be observed from Figure 9, small window length results in sharp behavior of the

density estimate while a large window size produces excessive averaging. The subplot with

the MSE in fact confirms that optimal density estimation for this Gaussian data is achieved

when h=0.295.

 11

-2 -1 0 1 2 3

0.2
0.4

0.6
0.8

0.2

0.4

x

Density estimate of Gaussian Distributed data

window size

p
e
s
t(
x
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

window size

M
S
E

MSE at given window length

Figure 9: Density estimate as a function of window length for Gaussian distributed data

Nearest Neighbor and K-Nearest Neighbor

Nearest neighbor and K-nearest neighbor are simple methods used for classification. Using a

set of training data, the nearest neighbor approach classifies a test point to be from the class

of the nearest training data point. The K-nearest neighbor approach examines K training data

neighbors surrounding a test point, and classifies the test point to be from the class who has

more points closer to the testing point. Figure 10 shows an example of the nearest neighbor

rule. The circle represents the unknown testing sample and its nearest neighbor comes from

the red class, it is labeled as red class.

Figure 10: The NN rule

 12

Figure 11 illustrates the K-nearest neighbor rule. Of the three training points closest to the

circle testing point, two are from the blue class and one from the red class, therefore the

testing point is labeled to be from the blue class.

Figure 11: The KNN rule with k=3

As before, to evaluate and compare the performance of Parzen windows, nearest neighbors

and K-nearest neighbors, several simulations were performed: (1) performance as a function

of separation between classes, (2) performance as a function of feature vector dimension size,

and (3) performance as a function of number of samples.

Experiment 1: Separation

Recall that ∆+= 12 mm
vv

. To evaluate performance as a function of separation between classes,

∆ was varied from 0 to 5, while the feature vector size is kept at N = 5 and the number of

samples for each class is 1000. The window side-length for Parzen windows is h = 0.3. The

number of neighbors for K-nearest neighbors is set at K = 7.

 13

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
40

50

60

70

80

90

100

%
 C
o
rr
e
c
t
C
la
s
s
if
ic
a
ti
o
n

Separation of Data

Performance as a function of data separation

Parzen Windows

Nearest Neighbor

K-Nearest Neighbors

Figure 12: Performance as a function of data separation

From Figure 12, as to be observed, the curve for Parzen windows almost completely overlaps

the curve for nearest neighbors. K-nearest neighbor performances continually better accuracy

at all separations, though the improvement is not very significant.

Experiment 2: Feature vector dimension size (N)

Feature vector dimension size N was varied from 1 to 40 to evaluate performance as a

function of separation between classes, while the separation is set at ∆ = 1.5 and the number

of samples for each class is 1000 (half used as training data, the other half used as testing

data). The window side-length for Parzen windows is h = 0.3. The number of neighbors for

K-nearest neighbors is set at K = 7. Repeatedly, K-nearest neighbors has continually higher

accuracy as feature vector dimension size goes higher. As to be observed form Figure 13,

increasing the dimension size does not leads to a significant increase in accuracy for either

nearest neighbor or K-nearest neighbor. On the contrary, increasing the dimension size makes

a decrease in accuracy for the Parzen windows methods at N > 10, accuracy declines to zero

percent. This can be explained by looking at the Gaussian window function:

()
()

2
2/

2

2

1
u

N
eu

v

v
−

=
π

ϕ

If N is very large, the constant in front of the exponential becomes too small to be represented

as a type double in Matlab – it is rounded to zero. Therefore ()uvϕ from class 1 is equal to

()uvϕ from class 2 which means all are equal to zero. The script is coded to not assign a class

when this occurs, resulting in zero accuracy. This suggests a crucial point when working with

 14

Parzen windows: with very large feature vector dimension sizes, rounding error becomes a

key issue.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

%
 C
o
rr
e
c
t
C
la
s
s
if
ic
a
ti
o
n

Feature Vector Dimension Size (N)

Performance as a function of feature vector dimension size

Parzen Windows

Nearest Neighbor

K-Nearest Neighbors

Figure 13: Performance as a function of feature vector dimension size (N)

Experiment 3: Data sample size (M)

To evaluate performance as a function of data sample size, the number of samples M for each

class was varied from 100 to 2500, while the separation is set at ∆ = 1.5 and the feature

vector dimension size is 5. Note that half of the samples (M/2) is used for training and the

rest for testing. The window side-length for Parzen windows is h = 0.3. The number of

neighbors for K-nearest neighbors is set at K = 7. Again, K-nearest neighbors performs better

accuracy than the two other methods. The accuracy curve for Parzen windows almost

completely overlaps the curve for nearest neighbors. As to be observed from Figure 14 below,

increasing sample size does not appear to increase performance for any of these three

methods.

 15

0 500 1000 1500 2000 2500
70

72

74

76

78

80

82

84

%
 C
o
rr
e
c
t
C
la
s
s
if
ic
a
ti
o
n

Number of Samples (M)

Performance as a function of data sample size

Parzen Windows

Nearest Neighbor

K-Nearest Neighbors

Figure 14: Performance as a function of data sample size (M)

Discussion of Results

For the experiments conducted to examine Parzen windows, nearest neighbor, and K-nearest

neighbors, K-nearest neighbors has been proved to have the highest accuracy. Parzen

window’s performance is almost exactly the same as that of nearest neighbor in almost all

cases examined here. Though this may be the case here, it is expected that window size and

window length will significantly change the performance of Parzen windows classification

depending on the circumstance. Similarly, the value for K may also be expected to change the

accuracy depending on the situation.

 16

% Question1

clc; close all ;

clear all ;

difvec=0:0.05:5;

% Nvec=[2:2:40 50:10:100];

% Mvec=[100:50:10000];

ite=length(difvec);

% ite=length(Nvec);

% ite=length(Mvec);

C1=zeros(1,ite);

C2=C1;

for iii=1:ite

 dif=difvec(iii); N=5; M=10000;

 %N=Nvec(iii); dif=1.5; M=10000;

 %M=Mvec(iii); dif=1.5; N=5;

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 % USER DEFINED MEAN AND VARIANCE %

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 % DATA IS IID HERE, MUST CORRELATE LATER

 mu1=[1:N]/2;

 sigma1=sqrt([1:N]);

 % Separate data by adjusting mean and variance

 mu2=mu1+dif;

 sigma2=sigma1;

 % diagonal of covariance of X from class 1

 covX1=diag([sigma1.^2]');

 % diagonal of covariance of X from class 2

 covX2=diag([sigma2.^2]');

 x1=zeros(M,N); x2=zeros(M,N);

 for ii=1:N

 x1(:,ii)=random('normal' ,mu1(ii),sigma1(ii),[M 1]);

 x2(:,ii)=random('normal' ,mu2(ii),sigma2(ii),[M 1]);

 end

 % GENERATING POSITIVE DEFINITE MATRIX TO CORRELATE DATA

 c=zeros(1,N); c(1)=1;

 r=ones(1,N);

 17

 P=toeplitz(c,r);

 Porth=orth(P); % orthogonalize P

 D=diag([1:N]); % eigenvalues along the diagonal

 E=inv(Porth)*D*Porth;

 % generating correlated feature vectors

 y1=x1*E;

 y2=x2*E;

 covY1=E*covX1*E';

 covY2=E*covX2*E';

 % Calculating means of Y1, Y2, correlated data for classes 1 and 2

 muY1=mean(y1);

 muY2=mean(y2);

 Sw=(y1-repmat(muY1,M,1))'*(y1-repmat(muY1,M,1)) +(y2-

repmat(muY2,M,1))'*(y2-repmat(muY2,M,1));

 %%%%%%%%%%%

 % with Sw %

 %%%%%%%%%%%

 w=inv(Sw)*(([muY1-muY2])');

 w_s=w;

 y=[y1;y2];

 %b=repmat(w',2*M,1).*y;

 b=y*w;

 % For univariate Gaussian with same E, threshold w0 is midway between

 % the two projected means

 w0=(w'*muY1'+w'*muY2')/2;

 ind1=find(b(1:M)>w0); % class 1

 ind2=find(b(M+1:end)<w0); % class 2

 TC=length(ind1)+length(ind2); % true classifications

 FC=2*M-TC;

 TD_FD_inv=[TC FC]

 C1(iii)=[TC/2/M*100];

 18

 %%%%%%%%%%%%%%

 % without Sw %

 %%%%%%%%%%%%%%

 Sw=eye(N);

 w=inv(Sw)*(([muY1-muY2])');

 y=[y1;y2];

 %b=repmat(w',2*M,1).*y;

 b=y*w;

 % For univariate Gaussian with same E, threshold w0 is midway between

 % the two projected means

 w0=(w'*muY1'+w'*muY2')/2;

 ind1=find(b(1:M)>w0); % class 1

 ind2=find(b(M+1:end)<w0); % class 2

 TC=length(ind1)+length(ind2); % true classifications

 FC=2*M-TC;

 TD_FD_iden=[TC FC]

 C2(iii)=[TC/2/M*100];

end

figure

plot(difvec,C1, 'ro-' , 'linewidth' ,1, 'MarkerSize' ,4); hold on

plot(difvec,C2, 'bo-' , 'linewidth' ,1, 'MarkerSize' ,4);

ylabel('% Correct Classification');

xlabel('Separation of Data');

title('Performance as a function of data separation');

legend('\omega^*=S_w^-1(m_1-m_2)' , '\omega_I=(m_1-m_2)')

% figure

% plot(Nvec,C1,'ro-','linewidth',1,'MarkerSize',4); hold on

% plot(Nvec,C2,'bo-','linewidth',1,'MarkerSize',4);

% ylabel('% Correct Classification');

% xlabel('Feature Vector Dimension Size (N)');

% title('Performance as a function of feature vecto r dimension size');

% legend('\omega^*=S_w^-1(m_1-m_2)','\omega_I=(m_1- m_2)')

 19

% figure

% plot(Mvec,C1,'ro-','linewidth',1,'MarkerSize',4); hold on

% plot(Mvec,C2,'bo-','linewidth',1,'MarkerSize',4);

% ylabel('% Correct Classification');

% xlabel('Number of Samples (M)');

% title('Performance as a function of data sample s ize');

% legend('\omega^*=S_w^-1(m_1-m_2)','\omega_I=(m_1- m_2)')

% Question2

clear all ;close all ;clc

clc; close all ;

clear all ;

%difvec=0:0.05:5;

%Nvec=[1:1:40];

Mvec=[100:100:1000 1500:500:2500];

% ite=length(difvec);

% ite=length(Nvec);

ite=length(Mvec);

C1=zeros(1,ite);

C2=C1;

for iii=1:ite

 %dif=difvec(iii); N=5; M=2500;

 %N=Nvec(iii); dif=1.5; M=2500;

 M=Mvec(iii); dif=1.5; N=5;

 [y1 y2 muY1 muY2 covY1 covY2]=gen_Ngaussian(N,M ,dif);

 % half of the data is for training, rest is for tes ting

 tr1=y1(1:M/2,:); tr2=y2(1:M/2,:);

 te1=y1(M/2+1:end,:); te2=y2(M/2+1:end,:);

 %%%%%%%

 % SVM %

 %%%%%%%

 20

 A=[tr1; tr2];

 len=length(A);

 D=eye(len);

 D(len/2:end,:)=D(len/2:end,:)*-1;

 nu = 1/size(A,1); tol = 1e-5; maxIter = 100; al pha = 1.9/nu;

 perturb = 0; normalize = 0;

 [iter, optCond, time, w, gamma] = lsvm(A,D,nu,t ol,maxIter,alpha, ...

 perturb,normalize);

 % w and gamma are used to classify data points

 res_tr=D*(A*w-gamma)>0; % testing on training data

 TD_FD_svmTr=[sum(res_tr) len-sum(res_tr)];

 % testing on non-training data

 A=[te1; te2];

 res_te=D*(A*w-gamma)>0; % testing on training data

 TD_FD_svmTe=[sum(res_te) len-sum(res_te)];

 %%%%%%%

 % ANN %

 %%%%%%%

 Ptr = [tr1; tr2]';

 len=length(tr1);

 Tc = [ones(1,len) 2*ones(1,len)];

 T = ind2vec(Tc);

 spread = 1;

 net = newpnn(Ptr,T,spread);

 % testing on training data

 A = sim(net,Ptr);

 Ac_tr = vec2ind(A);

 TD=[sum(Ac_tr(1:len)==1)+sum(Ac_tr(len+1:end)== 2)];

 TD_FD_annTr=[TD 2*len-TD];

 % testing on data

 Pte = [te1; te2]';

 A = sim(net,Pte);

 Ac_te = vec2ind(A);

 TD=[sum(Ac_te(1:len)==1)+sum(Ac_te(len+1:end)== 2)];

 21

 TD_FD_annTe=[TD 2*len-TD];

 C1(iii)=TD_FD_svmTe(1);

 C2(iii)=TD_FD_annTe(1);

 C1(iii)=C1(iii)/M*100;

 C2(iii)=C2(iii)/M*100;

end

% figure

% plot(difvec,C2,'ro-','linewidth',1,'MarkerSize',4); hold on

% plot(difvec,C1,'bo-','linewidth',1,'MarkerSize',4);

% ylabel('% Correct Classification');

% xlabel('Separation of Data');

% title('Performance as a function of data separati on');

% legend('PNN','LSVM')

% figure

% plot(Nvec,C2,'ro-','linewidth',1,'MarkerSize',4); hold on

% plot(Nvec,C1,'bo-','linewidth',1,'MarkerSize',4);

% ylabel('% Correct Classification');

% xlabel('Feature Vector Dimension Size (N)');

% title('Performance as a function of feature vecto r dimension size');

% legend('PNN','LSVM')

figure

plot(Mvec,C2, 'ro-' , 'linewidth' ,1, 'MarkerSize' ,4); hold on

plot(Mvec,C1, 'bo-' , 'linewidth' ,1, 'MarkerSize' ,4);

ylabel('% Correct Classification');

xlabel('Number of Samples (M)');

title('Performance as a function of data sample size');

legend('PNN' , 'LSVM')

LSVM algorithm

function [iter, optCond, time, w, gamma] =

lsvm(A,D,nu,tol,maxIter,alpha, ...

 perturb,normalize);

% LSVM Langrangian Support Vector Machine algorithm

% LSVM solves a support vector machine problem us ing an iterative

% algorithm inspired by an augmented Lagrangian f ormulation.

 22

%

% iters = lsvm(A,D)

%

% where A is the data matrix, D is a diagonal mat rix of 1s and -1s

% indicating which class the points are in, and ' iters' is the number

% of iterations the algorithm used.

%

% All the following additional arguments are opti onal:

%

% [iters, optCond, time, w, gamma] = ...

% lsvm(A,D,nu,tol,maxIter,alpha,perturb,normali ze)

%

% optCond is the value of the optimality conditio n at termination.

% time is the amount of time the algorithm took t o terminate.

% w is the vector of coefficients for the separat ing hyperplane.

% gamma is the threshold scalar for the separatin g hyperplane.

%

% On the right hand side, A and D are required. I f the rest are not

% specified, the following defaults will be used:

% nu = 1/size(A,1), tol = 1e-5, maxIter = 100, alpha = 1.9/nu,

% perturb = 0, normalize = 0

%

% perturb indicates that all the data should be p erturbed by a random

% amount between 0 and the value given. perturb i s recommended only

% for highly degenerate cases such as the exclusi ve or.

%

% normalize should be set to 1 if the data should be normalized before

% training.

%

% The value -1 can be used for any of the entries (except A and D) to

% specify that default values should be used.

%

% Copyright (C) 2000 Olvi L. Mangasarian and Davi d R. Musicant.

% Version 1.0 Beta 1

% This software is free for academic and research use only.

% For commercial use, contact musicant@cs.wisc.ed u.

 % If D is a vector, convert it to a diagonal matrix .

 [k,n] = size(D);

 if k==1 | n==1

 23

 D=diag(D);

 end ;

 % Check all components of D and verify that they ar e +-1

 checkall = diag(D)==1 | diag(D)==-1;

 if any(checkall==0)

 error('Error in D: classes must be all 1 or -1.');

 end ;

 m = size(A,1);

 if ~exist('nu') | nu==-1

 nu = 1/m;

 end ;

 if ~exist('tol') | tol==-1

 tol = 1e-5;

 end ;

 if ~exist('maxIter') | maxIter==-1

 maxIter = 100;

 end ;

 if ~exist('alpha') | alpha==-1

 alpha = 1.9/nu;

 end ;

 if ~exist('normalize') | normalize==-1

 normalize = 0;

 end ;

 if ~exist('perturb') | perturb==-1

 perturb = 0;

 end ;

 % Do a sanity check on alpha

 if alpha > 2/nu,

 disp(sprintf('Alpha is larger than 2/nu. Algorithm may not conve rge.'));

 end ;

 % Perturb if appropriate

 rand('seed' ,22);

 if perturb,

 A = A + rand(size(A))*perturb;

 end ;

 24

 % Normalize if appropriate

 if normalize,

 avg = mean(A);

 dev = std(A);

 if (isempty(find(dev==0)))

 A = (A - avg(ones(m,1),:))./dev(ones(m,1),:);

 else

 warning('Could not normalize matrix: at least one column is

constant.');

 end ;

 end ;

 % Create matrix H

 [m,n] = size(A);

 e = ones(m,1);

 H = D*[A -e];

 iter = 0;

 time = cputime;

 % "K" is an intermediate matrix used often in SMW c alclulations

 K = H*inv((speye(n+1)/nu+H'*H));

 % Choose initial value for x

 x = nu*(1-K*(H'*e));

 % y is the old value for x, used to check for termi nation

 y = x + 1;

 while iter < maxIter & norm(y-x)>tol

 % Intermediate calculation which is used twice

 z = (1+pl(((x/nu+H*(H'*x))-alpha*x)-1));

 y = x;

 % Calculate new value of x

 x=nu*(z-K*(H'*z));

 iter = iter + 1;

 end ;

 % Determine outputs

 time = cputime - time;

 25

 optCond = norm(x-y);

 w = A'*D*x;

 gamma = -e'*D*x;

 disp(sprintf('Running time (CPU secs) = %g' ,time));

 disp(sprintf('Number of iterations = %d' ,iter));

 disp(sprintf('Training accuracy = %g' ,sum(D*(A*w-gamma)>0)/m));

 return ;

function pl = pl(x);

 %PLUS function : max{x,0}

 pl = (x+abs(x))/2;

 return ;

% Question2_distribution

clear all ;close all ;clc

clc; close all ;

clear all ;

dif=1.5;

N=[5];

M=[2500];

ite=3;

C1=zeros(1,ite);

C2=C1;

for iii=1:ite

 if iii==1

 [y1 y2 muY1 muY2]=gen_Random(N,M,dif, 'normal');

 elseif iii==2

 [y1 y2 muY1 muY2]=gen_Random(N,M,dif, 'exponential');

 else

 [y1 y2 muY1 muY2]=gen_Random(N,M,dif, 'uniform');

 end

 26

 % half of the data is for training, rest is for tes ting

 tr1=y1(1:M/2,:); tr2=y2(1:M/2,:);

 te1=y1(M/2+1:end,:); te2=y2(M/2+1:end,:);

 %%%%%%%

 % SVM %

 %%%%%%%

 A=[tr1; tr2];

 len=length(A);

 D=eye(len);

 D(len/2:end,:)=D(len/2:end,:)*-1;

 nu = 1/size(A,1); tol = 1e-5; maxIter = 100; al pha = 1.9/nu;

 perturb = 0; normalize = 0;

 [iter, optCond, time, w, gamma] = lsvm(A,D,nu,t ol,maxIter,alpha, ...

 perturb,normalize);

 % w and gamma are used to classify data points

 res_tr=D*(A*w-gamma)>0; % testing on training data

 TD_FD_svmTr=[sum(res_tr) len-sum(res_tr)];

 % testing on non-training data

 A=[te1; te2];

 res_te=D*(A*w-gamma)>0; % testing on training data

 TD_FD_svmTe=[sum(res_te) len-sum(res_te)];

 %%%%%%%

 % ANN %

 %%%%%%%

 Ptr = [tr1; tr2]';

 len=length(tr1);

 Tc = [ones(1,len) 2*ones(1,len)];

 T = ind2vec(Tc);

 spread = 1;

 net = newpnn(Ptr,T,spread);

 % testing on training data

 A = sim(net,Ptr);

 Ac_tr = vec2ind(A);

 TD=[sum(Ac_tr(1:len)==1)+sum(Ac_tr(len+1:end)== 2)];

 27

 TD_FD_annTr=[TD 2*len-TD];

 % testing on data

 Pte = [te1; te2]';

 A = sim(net,Pte);

 Ac_te = vec2ind(A);

 TD=[sum(Ac_te(1:len)==1)+sum(Ac_te(len+1:end)== 2)];

 TD_FD_annTe=[TD 2*len-TD];

 C1(iii)=TD_FD_annTe(1);

 C2(iii)=TD_FD_svmTe(1);

 C1(iii)=C1(iii)/M*100;

 C2(iii)=C2(iii)/M*100;

end

C1

C2

% figure

% plot(difvec,C2,'rx-','linewidth',2,'MarkerSize',6); hold on

% plot(difvec,C1,'go-','linewidth',2,'MarkerSize',6);

% ylabel('Percent Correct Classification');

% xlabel('Separation of Data');

% title('Performance as a function of data separati on');

% legend('PNN','LSVM')

% figure

% plot(Nvec,C2,'rx-','linewidth',2,'MarkerSize',6); hold on

% plot(Nvec,C1,'go-','linewidth',2,'MarkerSize',6);

% ylabel('Percent Correct Classification');

% xlabel('Feature Vector Dimension Size (N)');

% title('Performance as a function of feature vecto r dimension size');

% legend('PNN','LSVM')

% figure

% plot(Mvec,C2,'rx-','linewidth',2,'MarkerSize',6); hold on

% plot(Mvec,C1,'go-','linewidth',2,'MarkerSize',6);

% ylabel('Percent Correct Classification');

% xlabel('Number of Samples (M)');

% title('Performance as a function of data sample s ize');

 28

% legend('PNN','LSVM')

% Question 3

% classification using PW, NN, KNN

clear all ;close all ;clc

difvec=0:0.1:5;

Nvec=[1:1:40];

Mvec=[100:100:2500];

ite=length(difvec);

% ite=length(Nvec);

% ite=length(Mvec);

C1=zeros(1,ite);

C2=C1;

C3=C1;

hi=0.3;

k=9;

for iii=1:ite

 dif=difvec(iii); N=5; M=1000;

 %N=Nvec(iii); dif=1.5; M=1000;

 %M=Mvec(iii); dif=1.5; N=5;

 [y1 y2 muY1 muY2 covY1 covY2]=gen_Ngaussian2(N, M,dif);

 % half of the data is for training, rest is for tes ting

 tr1=y1(1:M/2,:); tr2=y2(1:M/2,:);

 te1=y1(M/2+1:end,:); te2=y2(M/2+1:end,:);

 len=M/2;

 %%%%%%%%%%%%%%%%%%

 % Parzen Windows %

 %%%%%%%%%%%%%%%%%%

 class1=zeros(len,1);

 29

 class2=class1;

 for ii=1:len

 % for testing data from class 1

 post1=1/((M/2)*(hi^N))*sum(GaussianWin(N,(r epmat(te1(ii,:),M/2,1)-

tr1)/hi));

 post2=1/((M/2)*(hi^N))*sum(GaussianWin(N,(r epmat(te1(ii,:),M/2,1)-

tr2)/hi));

 if post1>post2 % p(w1|x)>p(w2|x)

 class1(ii)=1;

 end

 % for testing data from class 2

 post1=1/((M/2)*(hi^N))*sum(GaussianWin(N,(r epmat(te2(ii,:),M/2,1)-

tr1)/hi));

 post2=1/((M/2)*(hi^N))*sum(GaussianWin(N,(r epmat(te2(ii,:),M/2,1)-

tr2)/hi));

 if post1<post2 % p(w1|x)<p(w2|x)

 class2(ii)=1;

 end

 end

 TD=sum(class1)+sum(class2);

 FD=M-TD;

 TD_FD=[TD FD]

 C1(iii)=TD_FD(1)/M*100;

 %%%%%%%%%%%%%%%%%%%%

 % Nearest Neighbor %

 %%%%%%%%%%%%%%%%%%%%

 class1=zeros(M/2,1);

 class2=class1;

 for ii=1:M/2 % for each testing data point

 s=te1(ii,:);

 d1=sqrt(sum((tr1-repmat(s,M/2,1)).^2,2)); % distance from each

point in tr1

 30

 d2=sqrt(sum((tr2-repmat(s,M/2,1)).^2,2)); % distance from each

point in tr2

 d1min=min(d1); % closest point in tr1

 d2min=min(d2); % closest point in tr2

 % if closest to a point in tr1, then classify as fr om class 1

 % 0 means belonging to other class 1, 1 means belon ging to correct

class

 if d1min<d2min

 class1(ii)=1;

 else

 class1(ii)=0;

 end

 % repeat for each testing data point in class 2

 s=te2(ii,:);

 d1=sqrt(sum((tr1-repmat(s,M/2,1)).^2,2)); % distance from each

point in tr1

 d2=sqrt(sum((tr2-repmat(s,M/2,1)).^2,2)); % distance from each

point in tr2

 d1min=min(d1); % closest point in tr1

 d2min=min(d2); % closest point in tr2

 % if closest to a point in tr1, then classify as fr om class 1

 if d1min<d2min

 class2(ii)=0;

 else

 class2(ii)=1;

 end

 end

 TD=sum(class1)+sum(class2);

 FD=M-TD;

 [true_false_nn]=[TD FD]

 C2(iii)=true_false_nn(1)/M*100;

 31

 %%%%%%%%%%%%%%%%%%%%%

 %K-Nearest Neighbor %

 %%%%%%%%%%%%%%%%%%%%%

 class1=zeros(M/2,1);

 class2=class1;

 for ii=1:M/2 % for each testing data point

 s=te1(ii,:);

 d1=sqrt(sum((tr1-repmat(s,M/2,1)).^2,2)); % distance from each

point in tr1

 d2=sqrt(sum((tr2-repmat(s,M/2,1)).^2,2)); % distance from each

point in tr2

 d1=[d1 ones(M/2,1)]; % assigning 1 to denote from class 1

 d2=[d2 -ones(M/2,1)]; % assigning -1 to denote from class 2

 % sorting distances

 d=[d1;d2];

 ds=sortrows(d); % sortrows only sorts the first column

 dsk=ds(1:k,2);

 val=sum(dsk); % positive means class1 has more contribution, neg

means other

 if val>0

 class1(ii)=1;

 else

 class1(ii)=0;

 end

 s=te2(ii,:);

 d1=sqrt(sum((tr1-repmat(s,M/2,1)).^2,2)); % distance from each

point in tr1

 d2=sqrt(sum((tr2-repmat(s,M/2,1)).^2,2)); % distance from each

point in tr2

 d1=[d1 ones(M/2,1)]; % assigning 1 to denote from class 1

 d2=[d2 -ones(M/2,1)]; % assigning -1 to denote from class 2

 % sorting distances

 d=[d1;d2];

 32

 ds=sortrows(d); % sortrows only sorts the first column

 dsk=ds(1:k,2);

 val=sum(dsk); % positive means class1 has more contribution, neg

means other

 if val>0

 class2(ii)=0;

 else

 class2(ii)=1;

 end

 end

 TD=sum(class1)+sum(class2);

 FD=M-TD;

 [true_false_knn]=[TD FD]

 C3(iii)=true_false_knn(1)/M*100;

end

figure

plot(difvec,C1, 'ro-' , 'linewidth' ,1.5, 'MarkerSize' ,4); hold on

plot(difvec,C2, 'go-' , 'linewidth' ,1, 'MarkerSize' ,4);

plot(difvec,C3, 'bo-' , 'linewidth' ,1, 'MarkerSize' ,4);

ylabel('% Correct Classification');

xlabel('Separation of Data');

title('Performance as a function of data separation');

legend('Parzen Windows' , 'Nearest Neighbor' , 'K-Nearest Neighbors')

% figure

% plot(Nvec,C1,'ro-','linewidth',2,'MarkerSize',5); hold on

% plot(Nvec,C2,'go-','linewidth',1.5,'MarkerSize',4);

% plot(Nvec,C3,'bo-','linewidth',1.5,'MarkerSize',4);

% ylabel('% Correct Classification');

% xlabel('Feature Vector Dimension Size (N)');

% title('Performance as a function of feature vecto r dimension size');

% legend('Parzen Windows','Nearest Neighbor','K-Nea rest Neighbors')

 33

% figure

% plot(Mvec,C1,'ro-','linewidth',2,'MarkerSize',5); hold on

% plot(Mvec,C2,'go-','linewidth',1.5,'MarkerSize',4);

% plot(Mvec,C3,'bo-','linewidth',1.5,'MarkerSize',4);

% ylabel('% Correct Classification');

% xlabel('Number of Samples (M)');

% title('Performance as a function of data sample s ize');

% legend('Parzen Windows','Nearest Neighbor','K-Nea rest Neighbors')

% Parzen window density estimation for 1 or 2 dimensions!

clear all ;close all ;clc

% density estimation

N=1; % dimension of feature vector

M=10000; % number of samples for class 1 and class 2

dif=0.6; % difference between two means

hi=0.2; % defines window width

[y1 y2 muY1 muY2 covY1 covY2]=gen_Ngaussian2(N,M,di f);

% half of the data is for training, rest is for tes ting

tr1=y1(1:M/2,:); tr2=y2(1:M/2,:);

te1=y1(M/2+1:end,:); te2=y2(M/2+1:end,:);

x0=-3:0.1:4; % user defined range for density estimate

len=length(x0);

if N==1

 p=zeros(1,len);

 for ii=1:len

 p1(ii)=1/((M/2)*(hi^N))*sum(GaussianWin(N,(repmat(x0(ii),M/2,1)-

tr1)/hi));

 end

 figure

 pgss=normpdf(x0,muY1,sqrt(covY1));

 subplot(2,1,1);

 plot(x0,p1, 'r' , 'linewidth' ,2);

 hold on

 plot(x0,pgss, 'b' , 'linewidth' ,2);

 34

 subplot(2,1,2);

 [d c]=hist(tr1,len);

 delta=abs(c(1)-c(2));

 bar(c,(d/(M/2))/delta)

 xlim([min(x0) max(x0)]);

elseif N==2

 p=zeros(len,len);

 for ii=1:len

 for iii=1:len

 p1(ii,iii)=1/((M/2)*(hi^N))*sum(Gaussia nWin(N,(repmat([x0(ii)

x0(iii)],M/2,1)-tr1)/hi));

 end

 end

 figure

 mesh(x0,x0,p1); axis tight

end

% Parzen window density estimation for 1 or 2 dimensions!

% examines effect of window size on density estimation

clear all ;close all ;clc

% density estimation

N=1; % dimension of feature vector

M=5000; % number of samples for class 1 and class 2

dif=0.8; % difference between two means

hivec=0.005:0.01:1; % defines window width

lenh=length(hivec);

x0=-2.5:0.1:3; % user defined range for density estimate

len=length(x0);

p1=zeros(lenh,len);

for iii=1:lenh

 hi=hivec(iii);

 %Gaussian distribution

 35

% [y1 y2 muY1 muY2 covY1 covY2]=gen_Ngaussian2(N,M,dif);

% %Uniform distribution

 y1=rand(M,N);

 % half of the data is for training, rest is for tes ting

 tr1=y1(1:M/2,:);

 te1=y1(M/2+1:end,:);

 p=zeros(1,len);

 for ii=1:len

p1(iii,ii)=1/((M/2)*(hi^N))*sum(GaussianWin(N,(repm at(x0(ii),M/2,1)-

tr1)/hi));

 end

 end

figure

subplot(2,1,1)

mesh(x0,hivec,p1)

xlabel('x');

ylabel('window size');

zlabel('p_e_s_t(x)');

title('Density estimate of Gaussian Distributed data');

axis tight

% pdf=normpdf(x0,muY1,sqrt(covY1));

pdf=unifpdf(x0,0,1);

mse=sum((p1-repmat(pdf,lenh,1)).^2,2);

subplot(2,1,2);

plot(hivec,mse, 'r-' , 'linewidth' ,1.5);

xlabel('window size'); ylabel('MSE');

title('MSE at given window length');

