Proof for establishing that if $\mathrm{E}_{\mathbf{8}}$ is finite, then P_{8} is zero

$P_{\infty}:=\lim _{T \rightarrow \infty}\left[\frac{1}{2 \cdot T} \cdot \int_{-T}^{T}(|x(t)|)^{2} d t\right]^{\text {I }}$

Since
$\mathrm{E}_{\infty}:=\int_{-\infty}^{\infty}(|\mathrm{x}(\mathrm{t})|)^{2} \mathrm{dt}$
and is finite, we can define P_{8} to be:
$P_{\infty}:=\lim _{T \rightarrow \infty}\left(\frac{1}{2 \cdot T} \cdot E_{\infty}\right)^{\mathbf{I}}$
where E_{8} is a finite number. When a finite number is divided by a variable approaching infinity, the limit reaches 0 . Thus, P_{8} is equal to zero when E_{8} is a finite number.

