Problem Set \#6: Field Theory II

1. (a) Let G be a cyclic group of order g, and let $n>0$ be a divisor of g. Prove that the set

$$
\left\{x \in G \mid x^{n}=e\right\}
$$

is the unique subgroup of order n in G. (Here e denotes the identity in G.)
(b) Let $F=F_{q}$ be a finite field of cardinality $|F|=q$, and let n be a positive integer relatively prime to q. Prove that a field K with $F \subset K$ contains a splitting field L (over F) of the polynomial $X^{n}-1$ if and only if n divides $|K|-1$; and deduce that the degree $[L: F]$ is the order of q in the multiplicative group of units of $\mathbb{Z} /(n)$.
(c) Factor the polynomial $X^{12}-1 \in F_{5}[X]$ into irreducibles.
2. Let k be a field and $k(X)$ the field of fractions of the polynomial ring $k[X]$. Let f and g be the unique automorphisms of $k(X)$ fixing k and such that

$$
f(X)=1 / X, \quad g(X)=1-X
$$

In the group of all automorphisms of $k(X)$, let G be the subgroup generated by f and g.
(a) Write down explicitly all elements of G.
(b) Show that the fixed field of G is $k(Y)$, where

$$
Y=\left(X^{2}-X+1\right)^{3} /\left(X^{2}-X\right)^{2}
$$

(c) If $k(Y) \subset L \subset k(X)$ is a sequence of proper inclusions of fields with $L / k(Y)$ a normal field extension, then $L=k(Z)$ where

$$
Z=X+(1-1 / X)+\frac{1}{1-X}
$$

3. Let k be a field of characteristic zero. Assume that every polynomial in $k[X]$ of odd degree and every polynomial in $k[X]$ of degree two has a root in k. Show that k is algebraically closed.
4. Let $n \geq 1$ an integer, F a field. Show that

$$
x^{n}+y^{n}+z^{n}
$$ is irreducible in $F[x, y, z]$ if and only if $n \in F^{\times}$.

5. Let K be a field and let G be a finite group acting on K by field automorphisms. Denote by

$$
F:=\{x \in K \mid g x=x, \forall g \in G\}
$$

the fixed field of G.
(a) Show that if an irreducible polynomial $f \in F[x]$ has a root in K, then it factors into linear terms in $K[x]$.
(b) Suppose now that K is a subfield of the algebraic numbers $\overline{\mathbb{Q}}$. Use part (a) to show that every automorphism in $\operatorname{Aut}(\overline{\mathbb{Q}} / F)$ stabilizes K.
(c) Find a counterexample to (b) in the following sense: find some tower of extensions

$$
\begin{align*}
& L \\
& \mid \tag{1}\\
& K \\
& \mid \\
& F
\end{align*}
$$

and an element of $\operatorname{Aut}(L / F)$ that does not stabilize K.

