
ECE 301
Division 2, Fall 2006

Instructor: Mimi Boutin
Midterm Examination 3

Instructions:

1. Wait for the “BEGIN” signal before opening this booklet. In the mean-
time, read the instructions below and fill out the requested info.

2. You have 50 minutes to answer the 5 questions contained in this exam.
When the end of the exam is announced, you must stop writ-

ing immediately. Anyone caught writing after the exam is over will
get a grade of zero.

3. This booklet contains 14 pages. The last five pages contain a table
of formulas and properties. You may tear out these pages once the

exam begins. Each transform and each property is labeled with a
number. To save time, you may use these numbers to specify which
transform/property you are using when justifying your answer. In gen-
eral, if you use a fact which is not contained in this table, you must
explain why it is true in order to get full credit. The only exceptions
are the properties of the ROC, which can be used without justification.

4. This is a closed book exam. The only personal items allowed are
pens/pencils, erasers and something to drink. Scratch paper will be
provided by the exam supervisors. Anything else is strictly forbidden.

Name:

Email:

Signature:
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1. Consider the following CT signals:

x(t) =
sin (5πt)

πt
,

y(t) = x(t)ejω1t,

z(t) = x(t) cos (ω2t) .

(5 pts) a) Is the signal x(t) band limited? (Answer yes/no and justify.)
If you answered yes, what is the signal’s Nyquist rate?

(5 pts) b) Assuming that ω1 > 0, is the signal y(t) band limited? (Answer
yes/no and justify.) If you answered yes, what is the signal’s Nyquist rate?

(5 pts) c) Assuming that ω2 > 0, is the signal z(t) band limited? (Answer
yes/no and justify.) If you answered yes, what is the signal’s Nyquist rate?
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(10 pts) d) Can one recover x(t) from y(t)? (Answer yes/no. If you
answer yes, explain how. If you answered no, explain why not.)

(15 pts) e) Can one recover x(t) from z(t)? (Answer yes/no. If you answer
yes, explain how. If you answered no, explain why not.)
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(15 pts) f) Impulse-train sampling is used to obtain

xp[n] =

∞
∑

k=−∞

x(n)δ(n − kN).

If the sampling period is N = 2
11

, will aliasing occur? Justify your answer.
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(15 pts) g) Impulse-train sampling is used to obtain

yp[n] =

∞
∑

k=−∞

y(n)δ(n − kN).

If ω1 = −3π and the sampling period is N = 1
6
, will aliasing occur? Justify

your answer.
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(20 pts) 2. The following figure shows the overall system for filtering a
CT signal using a DT filter. If X (ω) and Hd(ω) are as shown below, with
1
T

= 20kHZ, sketch Xp(ω), Xd(ω), Yd(ω), Yp(ω), and Y(ω).
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(15 pts) 3. Using the definition of the Laplace transform (i.e. do not simply
take the answer from the table), compute the Laplace transform of

x(t) = e−5tu(−t)
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(20 pts) 4. Using the definition of the Laplace transform (i.e. do not simply
take the answer from the table), compute the inverse z-transform of

X(z) =
1 + z

1 + 1
3
z
, |z| > 3.
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(15 pts)5. A discrete-time LTI system as unit impulse response

h[n] = −n3nu[−n − 1].

What is the output of the system when the input is

x[n] = (1 + j)n?

(Leave your answer in unsimplified form.)
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Table

Fourier Series of CT Periodic Signals with period T

x(t) =
∞

∑

k=−∞

ake
jk(2π

T )t (1)

ak =
1

T

∫ T

0

x(t)e−jk(2π
T )tdt (2)

Some CT Fourier series

Signal ak

ejω0t a1 = 1, ak = 0 else. (3)

Periodic square wave

x(t) =

{

1, |t| < T1

0 T1 < |t| < T
2

sin kω0T1

kπ
(4)

and x(t + T ) = x(t)
∞

∑

n=−∞

δ(t − nT ) ak =
1

T
(5)

Fourier Series of DT Periodic Signals with period N

x[n] =
N−1
∑

k=0

ake
jk(2π

N )n (6)

ak =
1

N

N−1
∑

n=0

x[n]e−jk( 2π
N )n (7)
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CT Fourier Transform

F.T. : X (ω) =

Z

∞

−∞

x(t)e−jωtdt (8)

Inverse F.T.: x(t) =
1

2π

Z

∞

−∞

X(ω)ejωtdω (9)

Properties of CT Fourier Transform

Let x(t) be a continuous-time signal and denote by X (ω) its Fourier transform. Let y(t) be another
continuous-time signal and denote by Y(ω) its Fourier transform.

Signal F.T.

Linearity: ax(t) + by(t) aX (ω) + bY(ω) (10)

Time Shifting: x(t − t0) e−jωt0X (ω) (11)

Frequency Shifting: ejω0tx(t) X (ω − ω0) (12)

Time and Frequency Scaling: x(at)
1

|a|
X

“ ω

a

”

(13)

Multiplication: x(t)y(t)
1

2π
X (ω) ∗ Y(ω) (14)

Convolution: x(t) ∗ y(t) X (ω)Y(ω) (15)

Differentiation in Time:
d

dt
x(t) jωX (ω) (16)

Some CT Fourier Transform Pairs

ejω0t F
−→ 2πδ(ω − ω0) (17)

1
F
−→ 2πδ(ω) (18)

sin Wt

πt

F
−→ u(ω + W ) − u(ω − W ) (19)

δ(t)
F
−→ 1 (20)

u(t)
F
−→

1

jω
+ πδ(ω) (21)

∞
X

n=−∞

δ(t − nT )
F
−→

2π

T

∞
X

k=−∞

δ(ω −
2πk

T
) (22)
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DT Fourier Transform

F.T.:X (ω) =
∞

X

n=−∞

x[n]e−jωn (23)

Inverse F.T.: x[n] =
1

2π

Z

2π

X (ω)ejωndω (24)

Properties of DT Fourier Transform

Let x(t) be a signal and denote by X (ω) its Fourier transform. Let y(t) be another signal and denote by
Y(ω) its Fourier transform.

Signal F.T.

Linearity: ax[n] + by[n] aX (ω) + bY(ω) (25)

Time Shifting: x[n − n0] e−jωn0X (ω) (26)

Frequency Shifting: ejω0nx[n] X (ω − ω0) (27)

Time Reversal: x[−n] X (−ω) (28)

Time Exp.: xk[n] =



x[ n
k
], if k divides n

0, else.
X (ω) (29)

Multiplication: x[n]y[n]
1

2π
X (ω) ∗ Y(ω) (30)

Convolution: x[n] ∗ y[n] X (ω)Y(ω) (31)

Differencing in Time: x[n] − x[n − 1] (1 − e−jω)X (ω) (32)

Some DT Fourier Transform Pairs

N−1
X

k=0

akejk( 2π

N
)n F

−→ 2π

∞
X

k=−∞

akδ(ω −
2πk

N
) (33)

1
F
−→ 2π

∞
X

l=−∞

δ(ω − 2πl) (34)

(35)

δ[n]
F
−→ 1 (36)

u[n]
F
−→

1

1 − e−jω
+ π

∞
X

k=−∞

δ(ω − 2πk) (37)
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Laplace Transform

X(s) =

Z

∞

−∞

x(t)e−stdt (38)

Properties of Laplace Transform

Let x(t), x1(t) and x2(t) be three CT signals and denote by X(s), X1(s) and X2(s) their respective
Laplace transform. Let R be the ROC of X(s), let R1 be the ROC of X1(z) and let R2 be the ROC of
X2(s).

Signal L.T. ROC

Linearity: ax1(t) + bx2(t) aX1(s) + bX2(s) At least R1 ∩ R2 (39)

Time Shifting: x(t − t0) e−st0X(s) R (40)

Shifting in s: es0tx(t) X(s − s0) R + s0 (41)

Conjugation: x∗(t) X∗(s∗) R (42)

Time Scaling: x(at)
1

|a|
X

“ s

a

”

aR (43)

Convolution: x1(t) ∗ x2(t) X1(s)X2(s) At least R1 ∩ R2 (44)

Differentiation in Time:
d

dt
x(t) sX(s) At least R (45)

Differentiation in s: − tx(t)
dX(s)

ds
R (46)

Integration :

Z t

−∞

x(τ)dτ
1

s
X(s) At least R ∩Re{s} > 0 (47)

Some Laplace Transform Pairs

Signal LT ROC

u(t)
1

s
Re{s} > 0 (48)

−u(−t)
1

s
Re{s} < 0 (49)

u(t) cos(ω0t)
s

s2 + ω2

0

Re{s} > 0 (50)

e−αtu(t)
1

s + α
Re{s} > −α (51)

−e−αtu(−t)
1

s + α
Re{s} < −α (52)

δ(t) 1 all s (53)
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z-Transform

X(z) =
∞

X

n=−∞

x[n]z−n (54)

Properties of z-Transform

Let x[n], x1[n] and x2[n] be three DT signals and denote by X(z), X1(z) and X2(z) their respective
z-transform. Let R be the ROC of X(z), let R1 be the ROC of X1(z) and let R2 be the ROC of X2(z).

Signal z-T. ROC

Linearity: ax1[n] + bx2[n] aX1(z) + bX2(z) At least R1 ∩ R2 (55)

Time Shifting: x[n − n0] z−n0X(z) R, but perhaps adding/deleting z = 0 (56)

Time Shifting: x[−n] X(z−1) R−1 (57)

Scaling in z: ejω0nx[n] X(e−jω0z) R (58)

Conjugation: x∗(t) X∗(z∗) R (59)

Convolution: x1[n] ∗ x2[n] X1(z)X2(z) At least R1 ∩ R2 (60)

Some z-Transform Pairs

Signal LT ROC

u[n]
1

1 − z−1
|z| > 1 (61)

−u(−n − 1)
1

1 − z−1
|z| < 1 (62)

αnu[n]
1

1 − αz−1
|z| > α (63)

−αnu[−n − 1]
1

1 − αz−1
|z| < α (64)

nαnu[n]
αz−1

(1 − αz−1)2
|z| > α (65)

−nαnu[−n − 1]
αz−1

(1 − αz−1)2
|z| < α (66)

δ[n] 1 all z (67)

14


