Revisited Concept Exercise for Module 3 – No. 1 Monday, March 10, 2014

×		
	·	
efine metastability:		
·		

3. Fill in the *present state* – *next state* table for an S-R latch (Q^* is the **next state**):

S	R	Q	Q*
$\frac{S}{0}$	0	0	
0 0 0	0	1	2
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

$Q^* =$	

.

Revisited Concept Exercise for Module 3 – No. 2 Wednesday, March 12, 2014

1. Draw the circuit for a bistable using N- and P-channel MOSFETs.

2. Fill in the PS-NS table for a "D" flip-flop and derive its next state equation.

D	Q	Q*
0	0	
0	1	
1	0	
1	1	

Q* =

3. Fill in the PS-NS table for a "T" flip-flop and derive its next state equation.

T	Q	Q*
0	0	
0	1	
1	0	
1	1	

Q*=____

4. Fill in the PS-NS table for an "S-R" flip-flop and derive its next state equation.

S	R	Q	Q*
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Q*=____

Revisited Concept Exercise for Module 3 – No. 3 Monday, March 24, 2014

Given the following state transition diagram, complete the timing chart below.

ť

Revisited Concept Exercise for Module 3 – No. 4 Wednesday, March 26, 2014

Given the timing diagram, below, for a state machine that has one input (EN) and two state variables (Q1 and Q0), derive a state transition diagram (note that there is one unused state).

Revisited Concept Exercise for Module 3 – No. 5 Monday, March 31, 2014

Using a 7-segment display, design a "direction run indicator" (similar to that used on VCRs) that sequences the perimeter segments in a *clockwise* fashion if mode control input M=1 ($A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \rightarrow A \rightarrow B...$), or in a *counter-clockwise* fashion if mode control input M=0. Input S should control whether the display is running (S=0) or stopped (S=1); if stopped, the middle segment (G) should be on and the rest should be off. Draw a *Moore* model state transition diagram.

