Fall 2007

$(22 \mathrm{pts})$ 1. Let $x(t)$ and $y(t)$ be the input and the output of a continuoustime system, respectively. Answer each of the questions below with either yes or no (no justification needed).

If $y(t)=x(2 t)$, is the system causal?

Yes
\square
X
X

If $y(t)=(t+2) x(t)$, is the system causal?
If $y(t)=x\left(-t^{2}\right)$, is the system causal?
If $y(t)=x(t)+t-1$, is the system memoryless?
If $y(t)=x\left(t^{2}\right)$, is the system memoryless?
If $y(t)=x(t / 3)$, is the system stable?
If $y(t)=t(t / 3)$, is the system stable?
x \square
$\square>y\left(-\frac{1}{2}\right)=x\left(\frac{-1}{4}\right)$

\square depends or future
\square $\triangle y(2)=x(4)$
x \square
\square X

If $y(t)=\int_{-\infty}^{\epsilon} x(\tau) d \tau$, is the system stable?
If $y(t)=\sin (x(t))$, is the system time invariant?
If $y(t)=u(t) * x(t)$, is the system LTI?

If $y(t)=(t u(t)) * x(t)$, is the system linear?

(15 pts) 2. An LTI system has unit impulse response $h(t)=u(t+2)$. Compute the system's response to the input $x(t)=e^{-t} u(t)$. (Simplify your answer until all \sum signs disappear.)

$$
\begin{aligned}
y(t) & =x(t) * h(t) \\
& =\int_{-a}^{\infty} e^{-T} u(t) u(t+2-T d T \quad T>0 \\
& =\int_{0}^{\infty} e^{-T} u(t+2-T) d T \quad t+2-T>0 \quad T<t+2 \\
& =\int_{0}^{t+2} e^{-T} d T \quad i f T<+T 2 \text { else } 0 \\
& =\left.\left[-e^{-T}\right]\right|_{0} ^{t+2} n(t+2)=\left(-e^{-(t+2)}+1\right) u(t+2) \\
& =\left(1-e^{-(t+2)}\right) u(t+2)
\end{aligned}
$$

(15 pts) 3. Compute the energy and the power of the signal $x(t)=\frac{3 e^{j t}}{1+j}$.

$$
\begin{aligned}
& E_{\infty}=\int_{-\infty}^{\infty}|x(t)|^{2} d t \\
& E_{\infty}=\int_{-\infty}^{\infty}\left(\frac{3}{\sqrt{2}}\right)^{2}=\left.\frac{9}{2} t\right|_{-\infty} ^{\infty}=\infty \\
& P_{\infty}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \frac{9}{2} d t \\
& P_{\infty}=\lim _{T \rightarrow \infty}\left(\frac{1}{2 T}\right)\left(\frac{9}{2}+\left.\right|_{-T} ^{T}\right) \\
& P_{\infty}=\lim _{T \rightarrow \infty}\left(\frac{1}{2 T}\right)\left(\frac{9}{2}\right)(2 T)=\frac{9}{2}
\end{aligned}
$$

(15 pts) 4. Compute the coefficients a_{k} of the Fourier series of the signal $x(t)$ periodic with period $T=4$ defined by

$$
x(t)=\left\{\begin{array}{ll}
\sin (\pi t), & 0 \leq t \leq 2 \\
0, & 2<t \leq 4
\end{array} .\right.
$$

(Simplify your answer as much as possible.)

$$
\begin{aligned}
& x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k\left(\frac{\pi}{2}\right) t} \\
& a_{k}=\frac{1}{T} \int_{0}^{T} x(t) e^{-j k\left(\frac{\pi}{2}\right) t} d t
\end{aligned}
$$

$$
a_{0}=\text { average of signal }=0
$$

$$
a_{0}=\frac{1}{4} \int_{0}^{4} x(t) e^{-j \frac{\pi}{2} t} d t=\frac{1}{4} S_{0}^{2} \sin (\pi t) e^{-j \frac{\pi}{2} t} d t
$$

$$
x_{1}=\frac{1}{4} \int_{0}^{4} x(t) e^{2 \pi} d t=\frac{\frac{1}{4} S_{0}}{\sin (\pi t)=\frac{e^{j \pi t}-e^{-j \pi t}}{2 j} \quad a_{1}=\frac{1}{8 j} \int_{0}^{2} e^{j \frac{\pi}{2} t}-e^{-\frac{3}{2} j \pi t}}=\frac{1}{8 j} \int_{0}^{2} e^{j \frac{\pi}{2} t}-e^{-\frac{3}{2} j \pi t} e^{2 \pi j^{2}}
$$

$$
a_{1}=\frac{1}{8 j} \int_{0}^{2} e^{j \frac{\pi}{2}+}-e^{j \frac{\pi}{2}+} d t=\frac{1}{8 j} \int_{0}^{2} O d t=0
$$

$$
\begin{aligned}
& a_{1}=\frac{1}{8 j} \int_{0}^{2} e^{j \frac{\pi}{2} t}-e^{j \frac{\pi}{2} t} d t=\frac{1}{8 j} \int_{0}^{2} O d t=0 \\
& a_{2}=\frac{1}{4} \int_{0}^{4} x(t) e^{-j \pi t} d t=\frac{1}{8 j} \int_{0}^{2}\left(e^{j \pi t}-e^{-j \pi^{t}}\right) e^{-j \pi t} d t=\frac{1}{8 j} \int_{0}^{2}-e^{-2 j \pi t} d t
\end{aligned}
$$

$$
a_{2}=\frac{1}{8 j} \int_{0}^{2}-1 d t=\frac{1}{8 j}[-t]_{0}^{2}=-\frac{1}{4 j}
$$

$$
\begin{aligned}
& a_{2}=\frac{1}{8 j} \int_{0}^{2}-1 d t=\frac{1}{8 j}[-t]_{0}^{2}=-\frac{1}{4 j} \\
& a_{3}=\frac{1}{4} \int_{0}^{4} x(t) e^{-j \frac{3 \pi}{2} t}=\frac{1}{4} \int_{0}^{2} \sin (\pi t) e^{-j \frac{3 \pi}{2} t}=\frac{1}{8 j} \int_{0}^{2}\left(e^{-j \frac{1}{2} t}-\left(e^{-\frac{5}{2} j \pi t}\right) d t\right.
\end{aligned}
$$

$$
a_{3}=\frac{1}{4} \int_{0}^{2}\left(e^{-j \frac{\pi}{2} t}-e^{-j \frac{\pi}{2} t}\right) d t=0
$$

$$
\begin{aligned}
& a_{0}=0 \\
& a_{1}=0 \\
& a_{2}=\frac{-1}{45} \\
& a_{3}=0
\end{aligned}
$$

5. A discrete-time system is such that when the input is one of the signals in the left column, then the output is the corresponding signal in the right column:

$$
\begin{aligned}
& \text { input } \\
& \text { output } \\
& x_{0}[n]=\delta[n] \rightarrow y_{0}[n]=\delta[n-1], \\
& x_{1}[n]=\delta[n-1] \rightarrow y_{1}[n]=4 \delta[n-2], \\
& x_{2}[n]=\delta[n-2] \rightarrow y_{2}[n]=9 \delta[n-3] \\
& x_{3}[n]=\delta[n-3] \rightarrow y_{3}[n]=16 \delta[n-4], \\
& \vdots \\
& x_{k}[n]=\delta[n-k] \rightarrow y_{k}[n]=(k+1)^{2} \delta[n-(k+1)] \text { for any integer k. }
\end{aligned}
$$

(10 pts) a) Can this system be time-invariant? Explain.

$$
\partial[n] \rightarrow \text { time shift } \rightarrow d[n-1] \rightarrow \text { system } \rightarrow 4 \delta[n-2]
$$

$$
\begin{aligned}
& \partial[n] \rightarrow \text { timeshift } \rightarrow d[n-1] \rightarrow \text { system } \rightarrow 4 \delta[n-2] \\
& \partial[n] \rightarrow \text { system } \rightarrow d[n-1] \rightarrow \text { time shift } \delta[n-2]
\end{aligned}
$$

(10 pts) b) Assuming that this system is linear, what input $x[n]$ would yield the output $y[n]=u[n-1]$?
$U[n]$? not sure how to do this?

