Assignment 4 - Normal Familes \& Rouché's theorem

1. Does there exist a family of polynomials $Q_{n}(z)$ converging uniformly to $\frac{1}{z}$ on $|z|=1$?
2. Suppose $f(z)$ is entire and define

$$
\mathcal{F}=\{f(k z) \mid k \in \mathbb{C}\}
$$

Show that \mathcal{F} is normal if and only if f is a polynomial.
3. Let f be analytic on the open unit disk. Show that $\sum_{n=1}^{\infty} f\left(z^{n}\right)$ converges uniformly on compact $K \subset \mathbb{D}$.
4. Determine the number of zeroes of

$$
f(z)=2-z^{3}-e^{-z}
$$

on the upper half plane $\{\operatorname{Im} z>0\}$.
5. Show that if $Q(z)$ is a polynomial, there exists z with $|z|=1$ such that

$$
\left|Q(z)-\frac{1}{z}\right| \geq 1
$$

6. Show that all roots of $f(z)=z^{6}-5 z^{2}+10$ lie in the annulus $\{1<|z|<2\}$.
7. Let $f_{n}: \mathbb{D} \rightarrow \mathbb{C}$ be a sequence of injective holomorphic functions, and suppose $f_{n} \rightarrow f$ uniformly on compact subsets of \mathbb{D}. Show that f is either injective or constant.
8. Define

$$
\Pi=\left\{x+i y:|x|<\frac{\pi}{4},-\infty<y<\infty\right\}
$$

and suppose $f \in \mathcal{O}(\Pi)$ satisfies

$$
|f(z)| \leq 1, \quad f(0)=0
$$

Show that $|f(z)| \leq|\tan z|$.
9. Let \mathcal{F} denote the set of all holomorphic mappings of the unit disk to itself satisfying $f\left(\frac{1}{2}\right)=0$. Find

$$
\sup _{\mathcal{F}}\{\operatorname{Im} f(0)\} .
$$

10. (a) State Rouché's theorem.
(b) Use Rouché's theorem to prove the Fundamental Theorem of Algebra, i.e. that a polynomial $Q(z)$ of degree n has exactly n zeroes counted with multiplicity.
