Assignment 4 - Normal Familes & Rouché's theorem

- 1. Does there exist a family of polynomials $Q_n(z)$ converging uniformly to $\frac{1}{z}$ on |z| = 1?
- 2. Suppose f(z) is entire and define

$$\mathcal{F} = \{ f(kz) \mid k \in \mathbb{C} \}.$$

Show that \mathcal{F} is normal if and only if f is a polynomial.

- 3. Let f be analytic on the open unit disk. Show that $\sum_{n=1}^{\infty} f(z^n)$ converges uniformly on compact $K \subset \mathbb{D}$.
- 4. Determine the number of zeroes of

$$f(z) = 2 - z^3 - e^{-z}$$

on the upper half plane $\{ \text{Im } z > 0 \}$.

5. Show that if Q(z) is a polynomial, there exists z with |z| = 1 such that

$$|Q(z) - \frac{1}{z}| \ge 1.$$

- 6. Show that all roots of $f(z) = z^6 5z^2 + 10$ lie in the annulus $\{1 < |z| < 2\}$.
- 7. Let $f_n : \mathbb{D} \to \mathbb{C}$ be a sequence of injective holomorphic functions, and suppose $f_n \to f$ uniformly on compact subsets of \mathbb{D} . Show that f is either injective or constant.
- 8. Define

$$\Pi = \{ x + iy : |x| < \frac{\pi}{4}, \, -\infty < y < \infty \},\$$

and suppose $f \in \mathcal{O}(\Pi)$ satisfies

$$|f(z)| \le 1, \quad f(0) = 0.$$

Show that $|f(z)| \leq |\tan z|$.

9. Let \mathcal{F} denote the set of all holomorphic mappings of the unit disk to itself satisfying $f(\frac{1}{2}) = 0$. Find

$$\sup_{\mathcal{F}} \left\{ \operatorname{Im} f(0) \right\}$$

- 10. (a) State Rouché's theorem.
 - (b) Use Rouché's theorem to prove the Fundamental Theorem of Algebra, i.e. that a polynomial Q(z) of degree n has exactly n zeroes counted with multiplicity.