1. Let $f: X \rightarrow Y$ a continuous bijection with X, Y both metric spaces. If X is compact, show f^{-1} is also continuous. Does the result hold without compactness?
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\sum a_{n}=a \Longrightarrow \sum f\left(a_{n}\right)=f(a)$. Show $f(x)=c x$ for a fixed constant c.
3. Does there exist a non-continuous function $f: \mathbb{Z} \rightarrow \mathbb{R}$?
4. Let X and Y be metric spaces and $f: X \rightarrow Y$. Show f is continuous if and only if for every sequence $\left\{x_{n}\right\} \subset X$ with $x_{n} \rightarrow x \in X, f\left(x_{n}\right) \rightarrow$ $f(x)$.
5. Let $f: X \rightarrow Y$ a continuous function with X, Y both metric spaces. True or false (with proof/ counter-example):
(a) $\forall G$ open in $Y, f^{-1}(G)$ is open in X
(b) $\forall G$ open in $X, f(G)$ is open in Y
(c) $\forall F$ closed in $Y, f^{-1}(F)$ is closed in X
(d) $\forall F$ closed in $X, f(F)$ is closed in Y
(e) $\forall K$ compact in $Y, f^{-1}(K)$ is compact in X
(f) $\forall K$ compact in $\left.X, f^{(} K\right)$ is compact in Y
