Bridges

- 1. Let $E \subseteq \mathbb{R}$. Prove the following are equivalent
 - (a) $\forall A \subseteq \mathbb{R}, |A|_e = |A \cap E|_e + |A \cap E^c|_e$
 - (b) $\forall \epsilon > 0, \exists O, \text{ an open set such that } E \subseteq O, \text{ and } |O E|_e < \epsilon.$
 - (c) $\forall \epsilon > 0, \exists F$, a closed set such that $F \subseteq E$, and $|E F|_e < \epsilon$.
- 2. Let both f and g be functions of bounded variation on [a, b]. Prove that fg, f + g are also of bounded variation on [a, b]. Suppose $g > \epsilon > 0$ and show f/g is also of bounded variation.
- 3. Let $\{r_n\}$ be an enumeration of the rationals. Show that the function

$$f(x) = \sum_{\{n: r_n < x\}} \frac{1}{2^n}$$

- is strictly increasing and $\mathbb{Q} = \{x : f \text{ is discontinuous at } x\}.$
- 4. For any sequence $\{E_n\}$ of sets and A also a set, prove

$$A - \limsup E_n = \liminf (A - E_n)$$

$$A - \liminf E_n = \limsup (A - E_n).$$

5. Let χ_n be the indicator function for $E_n, n \in \mathbb{N}$ and $A = \limsup E_n, B = \lim \inf E_n$. Show that

$$\chi_A = \limsup_{n \to \infty} \chi_n,$$
$$\chi_B = \liminf_{n \to \infty} \chi_n.$$

6. Let a_n, b_n be sequences in \mathbb{R} . Compare the two quantities

$$\limsup(a_n b_n),$$

$$(\limsup a_n)(\limsup b_n)$$

and provide necessary proofs or counter examples to support your statements. Next prove $\liminf -a_n = -\limsup a_n$.

- 7. Let $E \subset [0,1]$, $f : E \to \mathbb{R}$. Show that f is uniformly continuous on E if and only if there is a sequence of polynomials $\{p_n(x)\}$ such that $p_n \to f$ uniformly on E.
- 8. For $f:[0,1] \to \mathbb{R}$, let V(f;[0,1]) be the variation of f over [0,1]. If $f_n \to f$ pointwise on [0,1], show that $V(f;[0,1]) \leq \liminf V(f_n;[0,1])$.
- 9. Given $S \subseteq \mathbb{R}$; for every finite subset $\{S_1, \ldots, S_n\} \subset S$, we have $|S_1 + S_2 + \cdots + S_n| \leq 1$. Show that S is countable.

10. Let $\alpha_n \in \mathbb{R}$ with $\sum |\alpha_n| < \infty$. If $\{r_n\}$ is an enumeration of the rationals in $I_0 = [0, 1]$, show that

$$\sum \frac{\alpha_n}{\sqrt{|x-r_n|}}$$

converges absolutely for a.e. $x \in I_0$.