QUESTION |
Fisher's Discriminant

The objective of this experiment is to see whatpesys when the solution of
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under the constraints that ||w||=1 whiclwis(S,™) (m1-m2) is instead set to

w=m1l-m2.That is we are forcibly setting the withlass scatter matrix to unity in the
solution to w. This makes the line which is useg@ruoject the data dependent only on the
means of the 2 classes.

Experiments

The motivation of the experiments were to see Hewnodifiedw performs and whether
there are cases where this can yield a betternpeaftce. We measure performance by
finding the w vector and projecting the data omtand seeing if the separation surface
does the task of classification of the projectet gints satisfactorily.

For all experiments we compare the performanceetstablished method of findimg
and compare it against tllewhich is only dependent on the means. We havéenrthe
code which takes the data from the 2 classes fimelsv vector and also the separation
hyper plane and plots the data, the projectionstlamdeparation surface.

The algorithm for drawing the plots are as follows:

1) Find w vector from the formulae.

2) Find the offset of the separation hyper surfacenfarigin wO=m.w
wherem is the global mean of the data.

3) Find a perpendicular . For 2 D if w =[w(1) w(2)] we can choose a
perpendicular like [-w(2) w(1)] and use this towra line through woO.

4) For the 3D case if w=[w(1) w(2) w(3)] find a perpicular direction like wn=[-
w(2) w(1) 0].

5) Project the data vectors on wn and subtata-projection on wn to find the the
projection on plane containing w.

6) To draw the hypersurface in 3-D compute

Z=(-w(1).x— w(2).y + w0)/w(3)

7) Use MATLAB mesh(z) command to draw the plane.



The structure for the next sections will be theadaged followed by error rates and the
plots obtained. We have performed experimentsfrghd 3-D overlapping and non
overlapping data. The 2 classes of data H&@ pointseach.

2-D Data
1) Well separateddata
Data 1 Data 2
Mean [12] [(2 -4]
Vari 04 O 04 O
anance 0 04 0 04

Classification error based on criteriony' X+w0>0 class 1 anaV X+w0<0 Class 2
Result forw=8,**(m1-m2)

Error = 0%

Result using wo=m1-m2

Error =0%

Figure (i) showing the projections and separation hyper plane for the fisher discriminant
and for the modified fisher method respectively. The pink and black are class | and class
2 data and the red and green are the projections of the data. The bluelineisthe
separation line



In this case there is no difference in the errangoted. This is because the data is very
well separated out and hence it will not be venystauctive to interpret results about
which method is better.

2) 2-D separated data which leads to error using m1-m2

Data 1 Data 2

Mean [5 6] [2 6]
) 1 0 0.1 O
Variance ( 0 1] ( 0 0.1)

Result for wo=(Sw”"-1)*(m1-m2)
Fisher Error = 0%
Using m1-m2 alone

Error= 3.8500 %
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Figure (ii) showing the projections and separation hyper plane for the fisher discriminant
and for the modified fisher method respectively. The pink and black are class| and class
2 data and the red and green are the projections of the data. The bluelineisthe
separation line



This case clearly motivates why we should not uéem for finding the optimum
weight vector. Clearly the method does not take atcount the variance of the data
resulting in thav vector being along the direction of means. Therarsing just m1-m2
is close to 4% while fisher draws the hyper surfaeeh that there is no error.

3) 2-D OVERLAPPING data

In order to experiment further we decided to seatwlappens when the 2 classes have
data that is over lapping.

Data 1 Data 2
Mean [2 8] [6 5]
| 848 -0.0 864 0.1
Variance [—0.05 7.6? (0.15 8.53

Fisher
Error = 16.75%

Modified Fisher
Error = 16.85 %

Fisher - 2D overlapping Fisher Maodified - 2D Owverlapping
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Figure (iii) showing the projections and separation hyper plane for the fisher
discriminant and for the modified fisher method respectively. The pink and black are
class| and class 2 data and the red and green are the projections of the data. The blue
line isthe separation line



In this case fisher's method once again gives welerror rate. The reason why the m1-
m2 method is also giving a comparable error rateasthe actual vector is very nearly
equal tom1-m2in this case. But fisher's method is precise andsfthe optimum

solution to maximize the between class means andnize the within class scatter.

4) 2-D uniform data

The motivation for the following data set is todisome data for which the fisher's
method actually gives a worse performance. We khawustructed the synthetic ddta

each clasdy combining 2 sets of distributed data - onezwnrial and one vertical. The
variance of such data is very large along X dimetts can be seen from the plots below.

Data 1 Data 2

Mean [25 O] [-25 0]
| 10269 6.3 10271 4.4
Variance ( 6.3 16.9) ( 4.4 17.])

Fisher ‘s Method gives an error of 16.025%

Modified Fisher gives a error of 0%
Fisher Modified - 2D non overlapping Fisher - 2D non overlapping
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Figure (iv) showing the projections and separation hyper plane for the fisher
discriminant and for the modified fisher method respectively. The pink and black are
class| and class 2 data and the red and green are the projections of the data. The blue
line isthe separation line



The data and its projection (enlarged view for theMODIFIED fisher's method)
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Figure (v) showing the projections and separation hyper plane for the modified fisher
method respectively. The pink and black are class | and class 2 data and the red and
green are the projections of the data. The blue lineisthe separation line

In this casanl-m2 seems to be a bettaw, measuring the classification error by the
method specified earlier. This is expected as wesea from the figure that the
projection plane is clearly along the line joinitng means of the 2 classes.
However this data has been generated in this mamiewe are not sure how about
likely we are to come across such a distributioprarctice.

Operations on 3-D data

Next we wish to investigate what happens when vezaip in a higher dimensionality.
We choose 3 dimensional features so that we camalze the results easily.



1) Well separated data

Data 1 Data 2
Mean [1.0285 1.9437 3.0294] [-0.9586 @B -2.9299]
1 00 1 00
Variance 010 010
0 01 0 01

Classification Error on the projected data usirghEr's method=0%
0%

Error using the modified expression fer
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Figure (vi) showing 2 classes, the offset projection and the separating plane
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Figure (vii) showing 2 classes, the offset projection and the separating plane for
w= ml-m2

As expected the result is same as the 2-D caselbteparated data.



2) Overlapping data

Data 1 Data 2

Mean [0.9912 2.0148 3.028Q] [-0.9889 QB8 1.9961 ]
0.8 0.2 O. 0.8 0.2 O.
Variance 0.2 05 0. 0.2 05 O.
0.1 04 O. 0.1 04 O.

Error using fisher = 10.65 %
Error using the modified fisher=11.85%
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Figure (viii) showing 2 classesin pink and black , the offset projectionsin red and green
and the separating plane



Figure (ix) showing 2 classesin pink and black , the offset projectionsin red and green
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and the separating plane using the w=m1-m2

In this case as is in 2-D case fisher’'s methodgper$ better.

3) 3D Non-overlapping Data

Data 1 Data 2
Mean [000] [220]
7 0 0 008 O 0
Variance 0 005 O 0 008 O
0O O 0.08 0 0 0.08

Error using fisher = 0%
Error using modified fisher=11%




Fisher 3D seperable

400

300

Figure (x) showing 2 classes in pink and black , the offset projectionsin red and green
and the separating plane using the normal fisher method



Figher Modified - 30 nonoverlapping
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Figure (xi) showing 2 classes in pink and black , the offset projectionsin red and green
and the separating plane using the w=m1-m2

Once again in this case (just as in 2-D) the m1mmeghod finds a poor solution by not
taking into account the within class scatter matnxthis case fisher performs much
better and hence should be the choice of classifier

Conclusion

As a conclusion it can be seen that in most cdmeedtablished fisher's method of
finding the weight vector works better. It appeiduat choosing m1-m2 is trivializing the
problem of classification.

However we have shown that there are anomaliesnaswich cases fisher's method
yields a poor performance. This is clearly seemf@&D case 4 of our experiments.

However it does not appear likely that such dgbes can occur frequently in practice
and hence if we are to make a choice, we beliesefigher’s well established method is
a better option.



Matlab Code

%Fisher Discriminant function for 2 and 3D data. X1 , X2 are data
vectors

%with each row being a feature vector . d is the di mesnsion size and k
is

%the offset for plotting in 3-D
function  fisher(X1,X2,d,k,rt)

%variables to hold size of input data
[m n]=size(X1);
ml=zeros(1,d);
m2=zeros(1,d);

%Checking for data's dimensionality

if (d==3)

plot3(X1(:,1),X1(:,2),X1(:,3), r+ )
hold on

plot3(X2(:,1),X2(:,2),X2(:,3), o)
end

if (d==2)

plot(X1(:,1),X1(:,2), m+');
hold on

plot(X2(:,1),X2(:,2), k*);
end

ml=mean(X1)
m2=mean(X2)
X=[X1;X2];

%glm stores the global mean
glm=mean(X)

S1=cov(X1)

S2=cov(X2)

SW=S1+S2;

%Compute Weight function
w=(SWA-1)*(m1-m2)';

if (d==3)

plot3(w(1)/(sgrt(w(1)"2 + w(2)"2 + w(3)"2)),w(2)/(s grt(w(1)"2 + w(2)"2
+ w(3)72)),w(3)/(sqrt(w(1)*2 + w(2)"2 + w(3)"2)), X)),

end

if (d==2)



plot(w(1)/(sqrt(w(1)"2 + w(2)*2)),w(2)/(sqrt(w(
w(2)"2)), X' );
end
magw=sqrt(w'*w);
vecw=w/magw;

if (d==3)

vecw2=[-vecw(2) vecw(1) 0];
mag2=sqrt(vecw2*vecw?2');
vecw2=vecw2/mag2;

end
if (d==3)
for i=1:m

vecl(i,:)=X1(i,:)-(X1(i,:)*vecw2")*vecw?2;
vec2(i,:)=X2(i,:)-(X2(i,:)*vecw2")*vecw?2;
end
end

%variables used for plotting the plane in 3-D
xmin=min(X(;,1));

xmax=max(X(;,1));

ymin=min(X(:,2));

ymax=max(X(:,2));

%plots the plane in between classes
if (d==3)
X=[xmin:0.1:xmax];
y=[ymin:0.1:ymax];
for i=1:length(x)
for j=1:length(y)
z(i,j)=(-w(1)*x(i)-w(2)*y(j) +glm*w)/w(3);
end
end
[p d]=size(2);
mesh(y,X,z);
end

%Computes number of misclassified points
if (d==2)
for i=1:m
vecl(i,:)=(X1(i,:)*vecw)*vecw",
vec2(i,:)=(X2(i,:)*vecw)*vecw",
end
end
misc1=0;
misc2=0;
if (d==3)
for i=1:m
t1(i,-)=vecl(i,:)+k*vecw2;
t2(i,:)=vec2(i,:)+k*vecw2;
if (X1(3i,:)*w - glm*w < 0)
miscl=miscl+1;
end
if (X2(i,:))*w - glm*w >0)
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misc2=misc2+1;

end
end
end
if (d==3)
plot3(t1(:,1),t1(:,2),t1(:,3), '+, 'Color'
plot3(t2(;,1),t2(:,2),t2(;,3), X', 'Color'
end

%Compute accuracy and plot for 2-D
misc1=0;
misc2=0;
wO0=glm*vecw
r=wO*vecw';
if (d==2)
plot(r(1),r(2), X);
line([(r(1)-k*vecw(2)),(r(1)+rt*vecw(2))],[(r(2
rt*vecw(1))]);

plot(vecl1(:,1),vecl(:,2), b+ )
plot(vec2(:,1),vec2(;,2), ox:' )
for i=1l:m

if (X1(i,:)*w - gim*w < 0)
miscl=miscl+1;

end

if (X2(i,:)*w - glm*w >0)
misc2=misc2+1;

end

end
accuracy=100*(1-(miscl+misc2)/(2*m))
end

)+k*vecw(1)),(r(2)-



Question 2

Support Vector Machines and Artificial Neural networks

Before beginning we discuss a brief descriptiornthef tools we have used. For Support
Vector Machines and Neural Networks we have made afsin built tool boxes in
Matlab®.

SVM tool in Matlab®.

Commands used in the experiments:
1) svmtrain

svmtrain takes as input the test vectors, the gtbeyp belong to, the kernel function , the
order of the polynomial in the case of a polynorkiinel and a option to show plot. The
show-plot option plots the training data labelitng tclasses and indicates the support
vectors chosen. It also draws the separation hygface. The function returns all these
data as a structure variable. This can be uselassi@ication.

There are several options for Kernel Function aechave experimented with the Radial
Basis function and the polynomial kernel of varyorgers.

2) svmclassify

This command takes the above returned structuiablarand the matrix of test vectors
and classifies them as either class 1 or classr2turns the classes of all the test vectors
in the order in which they appear. We can use iigrned information to check the
accuracy of the classifier.

NNtool in Matlab®

This tool is a Graphical User Interface Tool. Tleemucan specify several parameters of
the neural network such as the activation functibe,initial weights, the training and test
data, the number of epochs and the target dathdagiving training set.

The tool expects the user to give the training dathe form of a d X n matrix where d is
dimensionality of the data and n is the numberahing vectors. It expects “target” data
in the form of a 1 X n vector each entry specifyihg class of the corresponding training
sample. Once this data is given we can “createh#teork by specifying the following:

a) Type of network

b) Training function

¢) Adaption Learning Function
d) Number of layers

e) Number of neurons per layer
f) Transfer Function for neurons.



Following are some snapshots of the tool

) Network/Data Manager ] o

.- Input Data: ' Netwarks ] Output Daka:
ol
2

@ Target Data: a Error Data:
Largkrain
fargtest

:’) Input Delay States: :) Layer Delay States:

5 Import... | % New... | ] open... | 5 Export... | 32 Delete | @Help | ) Close |




¥ Create Network or Data

Metwork. | _DE |

Name

|netwu:-rk2

Metwork Properties

Mebwaork: Type:

Feed-forward backprop W |

Input data;

Target data;

Training function:
Adaption learning Function:
Performance Function:

Murber of layers:

Mumber of nearans; |10
Transfer Funckion; TANSIG (W

(Select an Input) |+ |

(Select a Targek) | w
TRAINLM b

| LEARMNGDM %

. MSE A

[ (7] view ] [ % Restore Defaults ]

[ 7 Create ] ’ ) Close ]




Metwork: network1

1 view |Train Simulate | Adapt | Reinitialize Weights || View/Edit \Weights

We can also get sample error plots like the one sho wn below
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In our experiments we have varied the number addndayer neurons and the number of
epochs in the network. We have made use of a fesdafd back propagation network




with 2 layers (excluding the input neurons). We éhaised the Levenberg-Margardt
function for training and the default value of LENBDM for learning function along
with Mean Square Error for performance. The tansigns used as a activation function
for the neurons.

Experiments

We have conducted experiments to evaluate the npeaface of both classifiers. We use
1000 points for each class and vary the amountagfibhg and test data in the proportion
10-90,35-65,65-35 and 90-10 respectively. We nbe gerformance of SVM under
different Kernels. We also experiment with numbérneurons in hidden layer. The
format is data followed by figures (for SVM) ancetha table showing results for both
SVM and Neural networks for different proportiorfgraining and test data.



1) 2-D overlapping data

Data 1 Data 2

Mean [1 1] [4 3]
_ 0.8 0.0 1 05
Variance 0.07 05 05 1

100 Training Points

350 Training Points

Figure (i) Training data and support vectors for different proportions of training data

using radial basisfunction




# of Training Samples 100 350 650 900
Accuracy Neural Network | 93.72 95.42 96.85 94.83
( 10 neurons in hidden layer)
Accuracy RBF 94.9444 94.8462 95.4286 96

Kernel

Accuracy 2° degree poly. | 94.6667 94.7692 94.1429 94.5000
Kernel

Accuracy A degree poly. | 94.5556 | 94.6154 | 94.2857 95
Kernel

Here we have chosen data which has separated rhearke variances are such that
there is a overlapping region. Here we observetti@miaccuracy of classification for the
support vector machines is between 94 and 96%. ANebserve this in the case of both
the radial basis and the polynomial kernel (of or@leand 3) ther performance remains
similar. Thus SVM performs well with this type cditd.

For a 5 layer ANN ther performance varies from ah@3% and increases as amount of
training is increased from 10% to 65%. This is etpe as neural networks perform
better with more training as they become “more &af the ranges of data and how to
react to it. A point to note is the drop in perf@amce of the ANN when 900 of the 1000
are used for training. This is a good example @rdraining the network and this is seen
consistently across all our experiments. Also tlaging time for neural networks was
more than that of the SVM.(results are not quaadifi

2) 2D more overlapping closer means

Data 1 Data 2
Mean [1 1] 2 2]

Var 08 00 07 021
anance 007 05 021 05




100 Training Points

350 Training Points
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Figure (ii) Training data and support vectors for different proportions of training data
using radial basisfunction

# of Training Samples 100 350 650 900
Accuracy Neural Network | 76.67 77.61 80.14 50.0
Accuracy RBF 74.7222 75.0769 75.7143 78

Kernel

Accuracy 29 degree poly. | 74.8333 74.6923 73.714377
kernel

Accuracy A degree poly. | 74.0556 | 73.5385 NC NC
kernel

Our next experiment was to see what happens whehawe overlapping data sets. In

this case support vector machines with radial bfasistions have a accuracy between 74
and 78%. The polynomial kernels( usinj and & order) have a similar performance.

We were unable to get convergence f8mBder polynomial for large amounts of training

data.



In the case of neural networks with 5 neurons #@opmance increases as the training
data increases till an extent but there is a dsere@ghen we use 90% of the data for
training due to overtraining.

As compared to support vector machines neural mé&svperform poorly when the
amount of training data is 90%. However when 65%hefdata is used neural networks
perform better. The trade off appears to be thaineé. Neural networks take time to
train so as to achieve good results.

In this case the data is overlapping bringing doenperformance of the classifiers quite
drastically as expected.

3D data

The next set of experiments is with the objecti¥stadying the performance of neural
network and SVM on 3-D data.

1) 3D overlapping data

Data 1 Data 2

Mean [111] [333 ]

1 00 1 00

Variance 0 20 0 2 0

0 0 5 0 0 5
# of Training Samples 100 350 650 900

Accuracy Neural Network | 85.55 87.38 88.0 86.32
Accuracy SVM 88.3889 | 89.3077 89.2857 92.5000
(RBF Kernel)




2) 3D more overlapping by just increasing the variace.

Data 1 Data 2
Mean [111] [333 ]
15 0 O 1 00
Variance 0 25 O 0 20
0O 0 55 0 0 5
# of Training Samples 100 350 650 900
Accuracy 87.7778 | 88.8462 88.2857 87.5000
(RBF Kernel)
3) 3-D more overlapping with shifted mean
Data 1 Data 2
Mean [222] [111]
1 00 1 00
Variance 0 20 0 20
0 0 5 0 0 5
# of Training Samples 100 350 650 900
Accuracy Neural Network 68.16 69.31 72.0 71.33
Accuracy 72.2222| 70.8462 72.1429 74.5000
(RBF Kernel)

In the above three cases we explore data witlaicemeans but with different variance.
In the case of SVMs when it attains a accuracy20b 9% when 100 tests cases are taken
from each class. In the case of data with same snbahwith more spread there is a
decrease in the performance of SVM. Thus we cantlsatythere is a general drop in

performance of SVM when the data variances areasad.




Neural Networks in these cases give us poorer padoce than SVMs but it is not too
large to tip the scales in favour of SVMs when dataverlapped. The difference is not
very large to clearly say that SVM's are betters®\if we let neural networks run for
large number of epochs or vary the number of neurwa may be able to get better
performance. In conclusion the results obtaine8-[ case are similar to those in 2-D
case that is neural networks can do well if traiapdropriately. However SVM’s can do
as well if not better in LESSER time.

SPIRAL DATA

We are going to generate spiral data. That is Hta tbr the 2 classes are spirals which
coil around each other. This presents one of thet miwallenging classification problems
and is inspired from [1] and [2]. We wish to seevhour SVM and Neural Networks
perform with such spiral data. We have attachedcode for generation of the spiral data
at the end of this section.

1) Training using the initial set of points of tle spiral

In this case we experimented with what happens wiemake the first set of values of
the spiral and use it to train a SVM and a neuetildrk and then test it with the next set
of values.
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Figure (iii) Training data and support vectors for different proportions of training data
using radial basisfunction



# of Training Samples 100 350 650 900

Accuracy Neural Network 41.61 45.07 30.71 33.0
Accuracy RBF 47.8889 48.1538 20.8571 2.5000
Kernel

In this case the performance is very poor. Thiseisause we are giving only the first set
of samples to the SVN and neural network. Thesear&s cannot really “predict” what
will come after that and hence perform very poariyh the test data which is of not
much resemblance to the original data in termssgbasition in the 2-D space.

Note especially that when 900 samples are used/M ®e get 2.5 % accuracy. This is
because as seen in the figures the surface is dsaeinthat most of our test data comes
in a region in which it is definitely going to getisclassified. As the test data arrives in
order most points arrive in this “incorrect” region

Another point of interest is that neural networkeslacomparatively better in the 900
training samples case. This indicates that it drévesseparation hyper plane differently
as compared to SVM.

However we can see that this method is not venyuosve in terms of telling us which
classifier is better.

2) Spiral Sampled

In order to correct for the above experiment wenigke” the spiral at different equi-
spaced points to obtain the training data set. Mreigive the points we did not consider
in training, for testing. We also have varied thertinating angle of the spiral.



For angle 2.5 pi

Interpolated Every 10th point

Interpolated Every Sth point

Figure (iv) Training data and support vectors for different proportions of training data

using radial basis function..

Fraction of Samples 1/10 1/5 1/2
ANN with 25 hidden 99.94 99.94 99.94
neurons
Accuracy Neural Network| 66.89 76.23 81.33
With 10 neurons
Accuracy RBF 86.5000 95.2500 96.5000
Kernel




For angle 4*pi

Fraction of samples 1/10 1/20
Accuracy NN 25 hidden | 99.9444 99.9474
neurons
Accuracy Neural Network| 82.77 75.47
10 hidden neurons
Accuracy with & degree 99 94.2105
poly Kernel
Accuracy with
Rbf Kernel 55.7778 56.6316

7™ degree polynomial kernel accuracy =98.7778

Every 20th sample

+ 1

2

O Support Vectors

Every 10th sample

D8 &g
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2
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3 -
Flgure v) Training data and support vectors for different proportions of training data
using 8" order polynomial function using every 20" and 10" sample.
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Figure (vi) Training data and support vectors for different proportions of training data
using radial basis function using every 10" and 20" sample.

This experiment yields some interesting resultsstlyi the SVM with a 8 order
polynomial kernel performs very well with a accuraaf 99% with every 10 sample
and 94% with every Dsample respectively. This is a very high accurauy is similar
to those reported in [1] (though they have usedfardnt kernel). The polynomial have
several degrees of freedom is accurately ableatetout the spiral. Below"®rder the
results are not good. As we increase the angl@éefpiral, we need higher and higher
degree polynomial. The radial basis function is alge to match the performance of the
polynomial kernels for an angle of 4pi. However @15 pi radial basis gives a
performance of upto 96.5% which is quite high.

Using similar training procedures for a neural ratewith 10 hidden neurons we get a
poor performance. However when we increased thebruwf neurons in hidden layer to
25 we get a 99.94 % accuracy as in [1]. This i®enled across both cases 2.5 pi and 4 pi.

In conclusion in the spiral problem both ANN andN#&/can give a similar recognition
accuracy but ANN’s take a large amount of timedbi@ve the same result.



Conclusion

We have experimented with SVM and Neural Networds dverlapping data and the
challenging spiral classification problem. It idfidult to emphatically say that one is
better or worse than the other. However we careadticonclude that neural networks
take more time to achieve similar results as SVMe performance of SVM also does
not appear to depend on the amount of training d&iée neural networks have suffer
from a problem of overtraining. So when we are imgjlto forego some amount of
accuracy for faster training, SVM appears to be rtime attractive option. Moreover
kernel's like the polynomial can be made to hawghhiegrees of freedom which can
trace even complex surfaces like the spiral. Howévis is at the cost of computational
cost and time complexity. The computational comipyeaf SVMs does not depend on
the dimensionality of the input space unlike in ANN
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MATLAB Code for spiral data generation and sampling

Equation of the spiral:

r=+ 6
clear all
clc

t=linspace(1,4*pi,100)";
rl=sqrt(t);
r2=-sqrt(t);

for i=1:length(t)
x1(i)=r1(i)*cos(t(i));
y1(i)=r1(i)*sin(t(i));
x2(i)=r2(i)*cos(t(i));
y2(i)=r2(i)*sin(t(i));
end

X1=[x1"y1T;
X2=[x2"'y2T;

=L

k=1,

for i=1:length(X1)
if (mod(i,10)==0)
X1 _new(:,j)=X1(,i);
X2 _new(:,j)=X2(:,i);
=i+
else
X11_new(:,kK)=X1(:,i);
X21 _new(:,K)=X2(:,i);
k=k+1;
end

end

Xtrain=[X1_new X2_new]’;
Xtest=[X11_new X21_new];

ntrain=length(X1_new);
ntest=100-ntrain;

class = [ones(1,ntrain) 1+ones(1,ntrain)]’;



g = [ones(1,ntest) 1+ones(1,ntest)]’;

s=svmtrain(Xtrain,class, 'Kernel_function’ , 'polynomial’ , 'polyorder’ 8, !
howplot' ,1);

p=svmclassify(s,Xtest)

miscl=sum(abs(p-q));
accuracy=100-100*miscl/(2*ntest)



Question 3
Parzen Window, K nearest neighbors and nearest neighbor technique

In this part we wish to experiment with three noswrgmetric pattern classification
techniques viz. Parzen Windows, K nearest neighésatdsnearest neighbor technique.

The data used for these set of experiments is aartteat used for section Il of the report.
For all parts we present the data followed by detalb results for varying amounts of
training and some figurest is to be noted that the figures contain all the points
(training and test pointsin blue color). Misclassified samples are indicated by a red

x mark.In the tables R is for Rectangular and G is fousa#n.

I) Parzen Window Technique

We have developed Matlab code for Parzen Windownigoe using the rectangular
window and Gaussian Window function. We encountetesl problem in rectangular
window of having no points in the window around ttest point. In such case we
resolved it by using the knowledge of the priorsee Wave assumed equal priors. So in
case of ties or no points in rectangular window hve@e generated a random number
which gives 1 50% of the time and 2 the other 5004he time. The output of this
random number is assigned as class label to oot poder consideration.

In the next section we will present our resultstfer Parzen Window Technique.

1) For 2-D well separated data

Class | Class I

Mean [11] [43]

c ] 0.8 0.0 1 05
ovariance 007 05 05 1

Experiments for different values of “window” sizeere conducted for both Gaussian
and Rectangular windows. Following are the results

Ytraining 10 35 65 90
H G R G R G R G| R

0.15 95.83 94.05| 95.77| 95.0 | 96.14 95.14| 95.0| 94.5

0.30 95.89 90.06| 96.07| 94.38| 96.29| 94.00| 95.0| 93.5

0.50 95.94 78.17| 96.0 | 88.39 95.71| 91.42| 95.5| 93.0

0.75 95.78 62.28| 95.85| 76.31| 95.14| 82.29| 94.0| 84.0
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Figure (i) showing the plots of Parzen Window technique using h=0.75.The left half
contains results for classification using Gaussian window and the right half contains
rectangular window



From the tables and the figures we can observe pbdbrmance of Parzen Window
technique is better as is expected when we usauasiza window. The reason is that it's
a smoother estimate of the probability at a givem{ Moreover in the case of points
which are far away from their actual class meaee (e figure) we can observe that
rectangular window method misclassifies the sampleite Gaussian window performs

much better. This can be especially seen in tts $iet of figures(100 training points).

This happens because there are no points in a winfl®.75 around those points and the
points are decided by the flip of a coin method. $maaller window sizes the rectangular
window seems to do better but not better than thes&an window function. There does

not appear to be any appreciable effect of amotitiaming data on the impact of the
classifier.

2) Overlapping 2-d Data

Class | Class Il
Mean [11] [22]

c , 0.8 0.0 0.7 0.21
ovariance 007 05 021 05

Following istheresultsfor accuracy for rectangular and Gaussian windows of
varying size

Qatraining 10 35 65 90

H

2 78.56| 78.83| 79.0 | 79.07] 79.29| 78.42| 75.0| 74.0

1.25 80.17) 78.94| 78.85| 78.31| 78.29| 78.14| 81.5| 80.0

0.75 79.720 77.95| 78.54| 77.54| 77.86| 77.29| 81.0| 81.0

0.50 79.76 74.44| 78.62| 76.77| 78.0 | 76.58 81.0| 79.0




Figure (ii)Following are the visualizations of the above for h=1.25

Gaussian Window, Test

data size =100

Rectangular Window, Training data size =100

0 1 2 3 4 5

Rectangular Window, Training data size =350




In the above case we have chose overlapping datales. As expected we start
getting incorrect estimates of the density at #s points leading to large error as
show in the tabular columns. However even in tlisecwe notice that the Gaussian
window function still gives a better estimate atakes into account the contribution
of all training points. However we can say thatthe case of overlapping data the
classifier as such does not do very well in therlayped regions.

3)3-D overlapping data

In this section we explore the performace of Pak@mdow in 3-D space.

Class | Class Il
Mean [3 3 3] [111]
Covariance 1 00 1 0 O
0 20 0 20
0 0 5 0O 0 5

Following istheresultsfor accuracy for rectangular and Gaussian windows of
varying size

110 35 65 90
% Train
H R G R G R G R G
0.5 58.61/ 91.72| 74 92.6 | 80.7193.42| 82 92.5
1 82 91.33 89.76| 92.30| 91.14| 92.42| 92.5| 91
15 88.94 90.11| 92.93| 91.46| 93.42| 92 92.5| 89.5
2 91.5 | 89.33 92.92| 90.38| 93.57| 89.85| 92.5| 88.5




Figure(iii) Error as a function of number of training points per class for Gaussian
window(red) and rectangular window(blue)

3-D overlapping data ||

Class | Class Il
Mean [33 3] [111]
Covariance
15 0 O 1 0O
0O 25 O 0 20
0O O 55 0O 0 5




The following is the result of varying training daand window size

110 35 65 90
% Train
H R G R G R G R | G
0.15 50 82.83 50.4 | 84.53 50.57| 85.14| 50 87.00
0.5 53.6 | 86.61 60.15| 88.38| 63 88.4 | 63.5/ 90
1 67.38| 88.11| 80.23| 88.07| 83 88.14| 86 88
15 78.33| 87.77| 85.15| 87.53| 85.71| 87.57| 88 87.5
2 83.72| 87.44| 87.23| 87.07| 87.28| 87.14| 88 86.5

Figure (iv) Sample plot for h=0.50 and 10% training data
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Fig(v) Theerror plot for h=0.50

3-D mor e overlapping with shifted mean

Class | Class Il
[2 2 2] [111]
Mean
Covariance 1 0 0 1 0 0
0 20 0 2 0
0 0 5 0O 0 5
The results for the above are as follows:
110 35 65 90
Y%Train
H R G R G R G R G
0.25 50.56 60.67| 50.92| 67.58| 50.28| 68.12| 53 73
0.5 50.88| 67.55| 53.76| 72.23| 55.71| 72.14| 56.5| 73
1 57.94| 71.67| 63.23| 73.53| 66.85| 73.71| 70 745
2 69.27| 71.72| 72.46| 75.38| 76.71| 73.85| 78.5| 74.5




a
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Figure (vi) showing the plots for h=1 for Gaussian and rectangular window for
900,650,350 and 100 training samples respectively.
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Figure (vii) showing the accuracy as a function of training samples

In the case of 3-D also Parzen window techniqulelyisimilar results as in 2-D case.
When there is overlap of data there is significdetrease in performance of the
classifier. The Gaussian window performs bettealmost all cases and there is not
much variation as a function of % of training esal¢g when the data is separable
which in quite intuitive. Differently distributedatia perform better with different
window sizes. The size of window is particularlypontant when we use rectangular
window than in the case of Gaussian window. Heneensed to pick the right
window size to optimize the performance of our siféer based on Parzen Window.
We also observe that most of the error in the reptkar technique is because of
outlier points which have no neighbors and hence @assified based on the
priors(=0.5 in our case).



I1) K nearest Neighborsand Nearest Neighbor Technique

We have operated on exactly the same data as memPaVindow technique. The
organization of this part is as follows. For eagiperiment we present the data and
the results of classification using different vau# K and by varying the amount of
data points available in advance (training). Thegpams are implemented with the

help of Matlab and the code is attached at theoige section.

1) For 2-D well separated data

Class | Class I

Mean [11] [43]
c ) 0.8 0.0 1 05
ovariance 007 05 05 1

The results are tabulated for the nearest neigliie@) and other values of K.

Yttraining

: 10 | 35 65 90
1 91.00| 91.07| 88.57 | 87.0
3 90.89| 90.00 88.28 | 89.0
5 91.11| 91.07 88.57 | 89.0
7 91.22| 91.38 89.71| 88.0

We also conducted experiments on the same datg Msinhattan distance

Ytraining

< 10 | 35 65 90
1 88.67 | 86.61| 85.43 | 88.0
3 89.22| 88.153 86.28 | 90.0
5 89.88| 90.15 88.0 | 87.0
7 90.56| 89.86 89.14 | 86.0




We do not observe a significant improvement ofstatice metric over the other.
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Figure (viii) the plots of Nearest neighbour with eucledian distance metric

In the case of K nearest neighbors we observectaasification accuracy varies as K is
changed. We observe that K=1 does not perform disawe=3, 5 or 7. This indicates
that K=1 is not as robust as higher values of l&. Wdve chosen odd values of K in order
to prevent ties from occurring when we check whotdiss samples are in a majority
around our test points. We observe some changecuracy as the number of samples is
increased but this is not appreciable to draw alosion about any correlation between
increases in training samples against accuracy.e¥yerimented by using Manhattan
distance as a metric and found that it performssedhan the Euclidian distance in this
case.



Data Set |1

Class | Class Il

Mean [11] [22]

covar 0.8 0.0 0.7 021
ovariance 007 05 021 05

Ytraining

< 10 | 35 65 90
1 43.89| 38.15| 42.57 | 47.0
3 53.11| 45.23 50.28 | 60.0
5 54.33| 50.46 52.57 | 59.0
7 59.67| 56.0| 56.28 61.0

Theresultsfor the above data for K=7 are as follows:

11 (7) 100

11(7), 350




11(7), 650 11(7), 900

Figure (ix) showing K=7 classification for overlapping data

In this case also we observe that K=1 is not asl gsohigher values for K. K=7 in this
case yields us better results than other valueK.oln this case the data is highly
overlapped and hence we cannot be drawing definitelusions about which classifier is

better. But we can say that it is better to usalaesof K greater than one to have a better
accuracy of the class of our test samples.

For 3-D data |
Class | Class Il
Mean [333] [111]
Covariance 1 00 1 0 0
0 20 0 20
0O 0 5 0 0 5

Theresultsfor variousK ar e shown below:

%Tr| 10 35 65 90
K
1 81 81.53 82.85 87
3 84.67 85.23 86 86
5 85.11 86.15 86 86
7 85.33 85.69 86.28 87
9 85.44 85.69 86.85 86

11 84.89 86.16 87.14 85
13 85 86.46 87.42 86




Figure (x) showing K=7 classification for overlapping data with 100 and 350 training

samples
For 3-D datalll
Class | Class I
Mean [333] [111]
Covariance
15 0 O 1 0O
0O 25 O 0 20
0O O 55 0O 0 5




Resultsfor KNN

%Tr| 10 35 65 90
K
1 65.67 68.61 67.42 72
3 73.67 73.38 75.71 76
5 74.55 76 75.42 81
7 73.89 75.38 76.86 80
9 74.33 77.23 77.14 80
11 74.55 77.69 75.71 82
13 75.44 77.69 76.28 85
3-Ddataset Il
Class | Class Il
[2 2 2] [111]
Mean
Covariance 1 0 0O/1 0 O 1 00
0O 2 0/|0 2 O 0 20
0O 0 5{0 0 5 0 0 5
%Tr| 10 35 65 90
K
1 29.44 31.23 30.28 33
3 39.77 37.23 38.85 38
5 40.77 39.23 35.71 39
7 42.77 38.15 43.42 47
9 43.11 42.76 41.42 47

In this case the percentage accuracy of classditas very poor as the data is highly
overlapped. The K=9 case gives a comparativelyebgterformance than other cases
once again reinforcing the fact that checking tlearast neighbor alone can lead to
incorrect classification.



Conclusions

In this section we have performed experiments fassifying overlapping data in 2-D
and 3-D for varying amounts of overlap using thezBa Window and K nearest
neighbor technique. We find that for Parzen Windsing a Gaussian window function
results in better performance than rectangular ewndK nearest neighbors out performs
nearest neighbor technique and is more robust. [$gecdserve that KNN does not suffer
from the problem that Parzen window(rectangulam&Brhas, that points of a class
which are very far from its means are not clasdifiased on priors in KNN. So these
points are well classified by KNN. Comparing Parasindow with KNN in our
experiments we observe that in several cases Painelows perform better than KNN.
This may be contrary to what is observed in practM/e believe this is because we
experimented with mainly overlapping data in ouesjuto determine which classifier
performs better when the classification problemaesy difficult. We have used 2-D and
3-D synthetic data mainly with the objective of @a$ visualization.



MATLAB CODE for Parzen Window and KNN

The following codes are contain “script files” weote up so as to speed up testing of
our data. The script files essentially take theadaid break it up into training and test
data performs classification and reports the aoyucd the classifier and also plots the
results of classification and the error plots.

Script filefor Parzen Window Technique
function [el e2]=simulate_parzen(X1,X2,h)

%variables to hold size of input data
[m n]=size(X1);

[F d]=size(X2);

z=1,

%Gives different training percentages
H=[100 350 650 900];

%2-D case
if (d==2)
for 1=1:4
plot(X1(:,1),X1(:,2), """ )hold on;plot(X2(:,1),X2(:,2), ‘0" ),

el(z)=parzen(X1(1:H(1),:),X2(1:H(),:),[X1(H()+1:m ) X2(H(D+1:m,)],
[ones(m-H(l),1);2*ones(m-H(l),1)],h,1);

figure

plot(X1(:,1),X1(:,2), """ )hold on;plot(X2(:,1),X2(:,2), ‘0" ),

e2(z)=parzen(X1(1:H(1),:),X2(L:H(I),:),[X1(H()+1:m ) X2(H(D+1:m,)],
[ones(m-H(l),1);2*ones(m-H(l),1)],h,2);

z=z+1;

end
end

%3-D case
if (d==3)

for 1=1:4

plot3(X1(:,1),X1(:,2),X1(:,3), """ );hold
on;plot3(X2(;,1),X2(:,2),X2(:,3), o' );

el(z)=parzen(X1(1:H(1),:),X2(L:H(1),:),[X1(H()+1:m ) X2(H(D)+1:m,2)],
[ones(m-H(l),1);2*ones(m-H(l),1)],h,1);

figure
plot3(X1(:,1),X1(:,2),X1(:,3), "' );hold
on;plot3(X2(;,1),X2(:,2),X2(:,3), o' );

e2(z)=parzen(X1(1:H(1),:),X2(L:H(l),:),[ X1 (H()+1:m 2 X2(H(D)+1:m,)],
[ones(m-H(l),1);2*ones(m-H(l),1)],h,2);

z=z+1,

end
end



plot(H,e1(1:z-1));hold on;plot(H,e2(1:z-1), ™)

%Compute accuracy
accuracy_rectangular=100-el
accuracy_gaussian=100-e2

Code for Parzen Window based classification using r ectangular and
Gaussian window functions.

function [error]=parzen(X1,X2,Xtest,group,h,ch)

%variables to hold size of input data ch gives the type of window
function to use

[m d]=size(X1);

[p d]=size(X2);

[Q R]=size(Xtest);

%counts the number of misclassified points
misc=0;

%Rectangular Window
if (ch==1)
for k=1.Q
px0Ow1=0;
px0w2=0;
for i=1:m
count=0;
for j=1.d
%applying condition
if (abs((X1(i,j)-Xtest(k,j))/h) <0.5)
count=count+1,
end
end
if (count==d)
pxOwl=px0wl+1;
end
end
for i=1:p
count=0;
for j=1.d
%applying condition
if (abs((X2(i,j)-Xtest(k,j))/h) <0.5)
count=count+1;
end
end
if (count==d)
pxOw2=px0w2+1;
end
end

%Making a decision; use a toss of a coin to resolve
conflicts/ties



if (pxOwl1l>px0w2)
class=1;
elseif  (pxOwl<px0w2)
class=2;
else
chance=randperm(2);
if (chance(l) ==1)
class =1;
else
class =2;
end
end

%print misclassified points in red

if (class~=0 && group(k)~=class)

if (d==2), plot(Xtest(k,1),Xtest(k,2),

end

if (d==3), plot3(Xtest(k,1),Xtest(k,2),Xtest(k,3),

on
end
misc=misc+1;
end
end
end

%Gaussian Window
if (ch==2)
for k=1.Q
px0w1=0;
px0w2=0;
for i=1:m
px0w1=px0wl+exp(-(0.5)*((X1(i,:)-Xtest(
Xtest(k,:)))/(h"2));
end
for i=1l:p
px0w2=px0w2+exp(-(0.5)*((X2(i,:)-Xtest(
Xtest(k,:)))/(h"2));
end

%Making a decision; use a toss of a coin to resolve

conflicts/ties
if (pxOwl1l>px0w2)
class=1;
else
class=2;
end

%print misclassified points in red
if (group(k)~=class)
if (d==2), plot(Xtest(k,1),Xtest(k,2),
end
if (d==3)
plot3(Xtest(k,1),Xtest(k,2),Xtest(k,3
end

X'

X'

);hold

on

X'

k,:))*(X1(i,:)-

K,))*(X2(i,:)-

);hold

), X'

on

);hold

);hold

on;



misc=misc+1;
end
end
end

error=(misc/Q)*100;
hold off

Code for K nearest neighbors. It takes the data and
nearest neighbors as inputs and does all the necess

function  simulate_knn(X1,X2,k)

%variables to hold size of input data
[m n]=size(X1);

[F d]=size(X2);

z=1,

%Gives different training percentages
H=[100 350 650 900];

if (d==2)
for 1=1:4
plot(X1(:,1),X1(:,2), "' );hold

Xtrain=[X1(1:H(1),:);X2(1:H(1),)];
Xtest=[XL(H(I)+1:m,:);X2(H(1)+1:m,:)];
group=[ones(H(l),1);2*ones(H(I),1)];
expec=[ones(m-H(l),1);1+ones(m-H(l),1)];
cl=knnclassify(Xtest,Xtrain,group,k);
for t=1:length(cl)
if (cl(t)-expec(t)~=0)
plot(Xtest(t,1),Xtest(t,2),
end
end
e(z)=(sum(abs(cl-expec))/(m-H(1)))*100;
z=z+1;

figure
end
end
if (d==3)
for 1=1:4
plot3(X1(:,1),X1(:,2),X1(:,3),
on;plot(X2(;,1),X2(:,2),X2(:,3), o' );

Xtrain=[X1(1:H(1),:);X2(1:H(),)];
Xtest=[XL(H(I)+1:m,:);X2(H(I)+1:m,:)];
group=[ones(H(l),1);2*ones(H(l),1)];
expec=[ones(m-H(l),1);1+ones(m-H(l),1)];
cl=knnclassify(Xtest,Xtrain,group,k,
for t=1:length(cl)
if (cl(t)-expec(t)~=0)
plot3(Xtest(t,1),Xtest(t,2), Xtest(t
end
end
e(z)=(sum(abs(cl-expec))/(m-H(l)))*100;
z=z+1;

the number of
ary tests.

on;plot(X2(:,1),X2(:,2), ‘0" );

© ),

);hold

‘cityblock’ );

3), X )



figure
end
end

figure
plot(e(1:z-1))

%Accuracy
accuracy=100-e



