
QUESTION I 
 

Fisher’s Discriminant 
 
 The objective of this experiment is to see what happens when the solution of 
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under the constraints that ||w||=1 which is w= 1( )wS − (m1-m2)  is instead set to  

w=m1-m2.That is we are forcibly setting the within class scatter matrix to unity in the 
solution to w. This makes the line which is used to project the data dependent only on the 
means of the 2 classes. 
 
Experiments 
 
The motivation of the experiments were to see how the modified w performs and whether 
there are cases where this can yield a better performance. We measure performance by 
finding the w vector and projecting the data onto it and seeing if the separation surface 
does the task of classification of the projected data points satisfactorily.  
 
For all experiments we compare the performance of the established method of finding w 
and compare it against the w which is only dependent on the means. We have written the 
code which takes the data from the 2 classes finds the w vector and also the separation 
hyper plane and plots the data, the projections and the separation surface. 
 
The algorithm for drawing the plots are as follows:  
 

1) Find w vector from the formulae. 
2) Find the offset of the separation hyper surface from origin w0=-m.w 

where m is the global mean of the data.  
3) Find a perpendicular to w. For 2 D if w =[w(1) w(2)] we can choose a 

perpendicular like [-w(2) w(1)] and use this to draw a line through w0. 
4) For the 3D case if w=[w(1) w(2) w(3)] find a perpendicular direction like wn=[-

w(2) w(1) 0].  
5) Project the data vectors on  wn and subtract data-projection on wn to find the the 

projection on plane containing w. 
6) To draw the hypersurface in 3-D compute 
    Z=(-w(1).x– w(2).y + w0)/w(3) 
 
7) Use MATLAB mesh(z) command to draw the plane. 

 
 



The structure for the next sections will be the data used followed by error rates and the 
plots obtained. We have performed experiments for 2-D and 3-D overlapping and non 
overlapping data. The 2 classes of data have 1000 points each.  

         
 

2-D Data 
 
1) Well separated data   
 

 
 
 
 
 
 
 

Classification error based on criterion tw X+w0>0 class 1 and tw X+w0<0 Class 2 
 
Result for w= 1

wS − *(m1-m2) 
 
Error = 0% 
 
Result using wo=m1-m2 
 
Error =0% 
 

 
 
Figure (i) showing the projections and separation hyper plane for the fisher discriminant 
and for the modified fisher method respectively. The pink and black are class I and class 
2 data and the red and green are the projections of the data. The blue line is the 
separation line 

 Data 1 Data 2 

Mean [1 2 ] [-2    -4 ] 

Variance 
0.4 0

0 0.4

 
 
 

 
0.4 0

0 0.4

 
 
 

 



 
In this case there is no difference in the error computed. This is because the data is very 
well separated out and hence it will not be very constructive to interpret results about 
which method is better.  
 
2) 2-D separated data which leads to error using m1-m2. 
 

  
 
 
 
 
 
 

Result for wo=(Sw^-1)*(m1-m2) 
 
Fisher Error = 0% 
 
Using m1-m2 alone 
 
Error= 3.8500 % 
 

 
 
Figure (ii) showing the projections and separation hyper plane for the fisher discriminant 
and for the modified fisher method respectively. The pink and black are class I and class 
2 data and the red and green are the projections of the data. The blue line is the 
separation line 
 
 
 
 

 Data 1 Data 2 

Mean [5  6 ] [2    6 ] 

Variance 
1 0

0 1

 
 
 

 
0.1 0

0 0.1

 
 
 

 



This case clearly motivates why we should not use m1-m2 for finding the optimum 
weight vector. Clearly the method does not take into account the variance of the data 
resulting in the w vector being along the direction of means. The error using just m1-m2 
is close to 4% while fisher draws the hyper surface such that there is no error. 
 
 
 
3) 2-D OVERLAPPING data 
 
In order to experiment further we decided to see what happens when the 2 classes have 
data that is over lapping. 
 

 
 
 
 
 
 
 

 
 
 
Fisher 
Error  =  16.75% 
 
Modified Fisher 
Error =  16.85 % 
 

 
 
Figure (iii) showing the projections and separation hyper plane for the fisher 
discriminant and for the modified fisher method respectively. The pink and black are 
class I and class 2 data and the red and green are the projections of the data. The blue 
line is the separation line 
 

 Data 1 Data 2 

Mean [2 8] [6 5] 

Variance 
8.48 0.05

0.05 7.6

− 
 − 

 
8.64 0.15

0.15 8.53

 
 
 

 



In this case fisher’s method once again gives us lower error rate. The reason why the m1-
m2 method is also giving a comparable error rate is that the actual w vector is very nearly 
equal to m1-m2 in this case. But fisher’s method is precise and finds the optimum 
solution to maximize the between class means and minimize the within class scatter. 
 
 
 
4) 2-D uniform data 
 
The motivation for the following data set is to find some data for which the fisher’s 
method actually gives a worse performance. We have constructed the synthetic data for 
each class by combining 2 sets of distributed data - one horizontal and one vertical. The 
variance of such data is very large along X direction as can be seen from the plots below. 
 

 
 
 
 
 
 
 

 
Fisher ‘s Method gives an error of 16.025% 
Modified Fisher gives a error of         0%  
 
 

 
 
Figure (iv) showing the projections and separation hyper plane for the fisher 
discriminant and for the modified fisher method respectively. The pink and black are 
class I and class 2 data and the red and green are the projections of the data. The blue 
line is the separation line 
 

 Data 1 Data 2 

Mean [25    0] [-25   0]  

Variance 
1026.9 6.3

6.3 16.9

 
 
 

 
1027.1 4.4

4.4 17.1

 
 
 

 



The data and its projection (enlarged view for the MODIFIED fisher’s method) 
 

 
Figure (v) showing the projections and separation hyper plane for the modified fisher 
method respectively. The pink and black are class I and class 2 data and the red and 
green are the projections of the data. The blue line is the separation line 
 
 
In this case m1-m2 seems to be a better w, measuring the classification error by the 
method specified earlier. This is expected as we can see from the figure that the 
projection plane is clearly along the line joining the means of the 2 classes.  
However this data has been generated in this manner and we are not sure how about 
likely we are to come across such a distribution in practice. 
 

Operations on 3-D data 
 
Next we wish to investigate what happens when we operate in a higher dimensionality. 
We choose 3 dimensional features so that we can visualize the results easily. 
 
 
 
 
 
 
 
 
 
 
 



1) Well separated data  
 

 
 
 
 
 
 
 
 
 

 
Classification Error on the projected data using Fisher’s method=0% 
Error using the modified expression for w                                   =0% 

 
 

Figure (vi) showing 2 classes , the offset projection and the separating plane 

 Data 1 Data 2 

Mean [ 1.0285    1.9437   3.0294 ] [ -0.9586   -2.0054   -2.9299 ] 

Variance 

1 0 0

0 1 0

0 0 1

 
 
 
 
 

 

1 0 0

0 1 0

0 0 1

 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (vii) showing 2 classes , the offset projection and the separating plane for         
w= m1-m2 

 
 
 
As expected the result is same as the 2-D case of well separated data. 
 
 
 
 
 
 
 
 
 
 
 



2) Overlapping data 
 

 
 
 
 
 
 
 
 

 
Error using fisher = 10.65 % 
Error using the modified fisher= 11.85% 

 
Figure (viii) showing 2 classes in pink and black , the offset projections in red and green 

and the separating plane 
 

 Data 1 Data 2 

Mean [0.9912    2.0148    3.0280 ] [-0.9889    0.9819    1.9961 ] 

Variance 

0.8 0.2 0.1

0.2 0.5 0.4

0.1 0.4 0.9

 
 
 
 
 

 

0.8 0.2 0.1

0.2 0.5 0.4

0.1 0.4 0.9

 
 
 
 
 

 



 
Figure (ix) showing 2 classes in pink and black , the offset projections in red and green 

and the separating plane using the w=m1-m2 
 
In this case as is in 2-D case fisher’s method performs better. 
 
 
3) 3D Non-overlapping Data 

 
 

 
 
 
 
 
 
 
 
 

 
Error using fisher = 0% 
Error using modified fisher=11% 
 
 
 

 Data 1 Data 2 

Mean [ 0 0 0 ] [ 2 2 0 ] 

Variance 

7 0 0

0 0.05 0

0 0 0.08

 
 
 
 
 

 

0.08 0 0

0 0.08 0

0 0 0.08

 
 
 
 
 

 



 
 
 

Figure (x) showing 2 classes in pink and black , the offset projections in red and green 
and the separating plane using the normal fisher method 

 



 
 

Figure (xi) showing 2 classes in pink and black , the offset projections in red and green 
and the separating plane using the w=m1-m2 

 
Once again in this case (just as in 2-D) the m1-m2 method finds a poor solution by not 
taking into account the within class scatter matrix. In this case fisher performs much 
better and hence should be the choice of classifier. 
 
 
Conclusion 
 
As a conclusion it can be seen that in most cases the established fisher’s method of 
finding the weight vector works better. It appears that choosing m1-m2 is trivializing the 
problem of classification. 
However we have shown that there are anomalies and in such cases fisher’s method 
yields a poor performance. This is clearly seen from 2-D case 4 of our experiments.  
 
 However it does not appear likely that such data types can occur frequently in practice 
and hence if we are to make a choice, we believe that fisher’s well established method is 
a better option. 
 
 



 
 
 
 
 

Matlab Code 
 
%Fisher Discriminant function for 2 and 3D data. X1  , X2 are data 
vectors  
%with each row being a feature vector . d is the di mesnsion size and k 
is  
%the offset for plotting in 3-D  
  
function  fisher(X1,X2,d,k,rt)  
  
%variables to hold size of input data  
[m n]=size(X1);  
m1=zeros(1,d);  
m2=zeros(1,d);  
  
%Checking for data's dimensionality  
if (d==3)  
plot3(X1(:,1),X1(:,2),X1(:,3), 'r+:' );  
hold on 
plot3(X2(:,1),X2(:,2),X2(:,3), 'g*:' );  
end  
  
if (d==2)  
plot(X1(:,1),X1(:,2), 'm+' );  
hold on 
plot(X2(:,1),X2(:,2), 'k*' );  
end  
  
  
m1=mean(X1)  
m2=mean(X2)  
X=[X1;X2];  
  
%glm stores the global mean  
glm=mean(X)  
S1=cov(X1)  
S2=cov(X2)  
SW=S1+S2; 
  
%Compute Weight function  
w=(SW^-1)*(m1-m2)';  
  
if (d==3)  
plot3(w(1)/(sqrt(w(1)^2 + w(2)^2 + w(3)^2)),w(2)/(s qrt(w(1)^2 + w(2)^2 
+ w(3)^2)),w(3)/(sqrt(w(1)^2 + w(2)^2 + w(3)^2)), 'X' );  
end  
if (d==2)  



    plot(w(1)/(sqrt(w(1)^2 + w(2)^2)),w(2)/(sqrt(w( 1)^2 + 
w(2)^2)), 'X' );  
end  
magw=sqrt(w'*w);  
vecw=w/magw;  
  
  
if (d==3)  
vecw2=[-vecw(2) vecw(1) 0];  
mag2=sqrt(vecw2*vecw2');  
vecw2=vecw2/mag2;  
end  
  
if (d==3)  
for  i=1:m  
    vec1(i,:)=X1(i,:)-(X1(i,:)*vecw2')*vecw2;  
    vec2(i,:)=X2(i,:)-(X2(i,:)*vecw2')*vecw2;  
end  
end  
  
%variables used for plotting the plane in 3-D  
xmin=min(X(:,1));  
xmax=max(X(:,1));  
ymin=min(X(:,2));  
ymax=max(X(:,2));  
  
%plots the plane in between classes  
if (d==3)  
    x=[xmin:0.1:xmax];  
    y=[ymin:0.1:ymax];  
    for  i=1:length(x)  
        for  j=1:length(y)  
    z(i,j)=(-w(1)*x(i)-w(2)*y(j) +glm*w)/w(3);  
        end  
    end  
[p q]=size(z);  
mesh(y,x,z);  
end  
  
%Computes number of misclassified points  
if (d==2)  
for  i=1:m  
    vec1(i,:)=(X1(i,:)*vecw)*vecw';  
    vec2(i,:)=(X2(i,:)*vecw)*vecw';  
end  
end  
misc1=0;  
misc2=0;  
if (d==3)  
    for  i=1:m  
        t1(i,:)=vec1(i,:)+k*vecw2;  
        t2(i,:)=vec2(i,:)+k*vecw2;  
        if (X1(i,:)*w - glm*w < 0)  
            misc1=misc1+1;  
        end  
        if (X2(i,:)*w - glm*w >0)  



            misc2=misc2+1;  
        end  
    end  
end  
  
if (d==3)  
plot3(t1(:,1),t1(:,2),t1(:,3), '+' , 'Color' , 'b' );  
plot3(t2(:,1),t2(:,2),t2(:,3), 'x' , 'Color' , 'g' );  
end  
  
%Compute accuracy and plot for 2-D  
misc1=0;  
misc2=0;  
w0=glm*vecw  
r=w0*vecw';  
if (d==2)  
    plot(r(1),r(2), 'X' );  
    line([(r(1)-k*vecw(2)),(r(1)+rt*vecw(2))],[(r(2 )+k*vecw(1)),(r(2)-
rt*vecw(1))]);  
    plot(vec1(:,1),vec1(:,2), 'b+:' );  
    plot(vec2(:,1),vec2(:,2), 'gx:' );   
    for  i=1:m  
        if (X1(i,:)*w - glm*w < 0)  
            misc1=misc1+1;  
        end  
        if (X2(i,:)*w - glm*w >0)  
            misc2=misc2+1;  
        end  
    end  
    accuracy=100*(1-(misc1+misc2)/(2*m))  
end  
 



Question 2 
 

Support Vector Machines and Artificial Neural networks 
 

Before beginning we discuss a brief description of the tools we have used. For Support 
Vector Machines and Neural Networks we have made use of in built tool boxes in 
Matlab®. 
 
SVM tool in Matlab®.  
 
Commands used in the experiments:  
 

1) svmtrain 
 

svmtrain takes as input the test vectors, the group they belong to, the kernel function , the 
order of the polynomial in the case of a polynomial kernel and a option to show plot. The 
show-plot option plots the training data labeling the classes and indicates the support 
vectors chosen. It also draws the separation hypersurface. The function returns all these 
data as a structure variable. This can be used in classification. 
There are several options for Kernel Function and we have experimented with the Radial 
Basis function and the polynomial kernel of varying orders. 
 
2) svmclassify 
 
This command takes the above returned structure variable and the matrix of test vectors 
and classifies them as either class 1 or class 2. It returns the classes of all the test vectors 
in the order in which they appear. We can use this returned information to check the 
accuracy of the classifier.  
 
NNtool in Matlab® 
 
This tool is a Graphical User Interface Tool. The user can specify several parameters of 
the neural network such as the activation function, the initial weights, the training and test 
data, the number of epochs and the target data for the giving training set.  
 
The tool expects the user to give the training data in the form of a d X n matrix where d is 
dimensionality of the data and n is the number of training vectors. It expects “target” data 
in the form of a 1 X n vector each entry specifying the class of the corresponding training 
sample. Once this data is given we can “create” the network by specifying the following:  
 
a) Type of network  
b) Training function  
c) Adaption Learning Function 
d) Number of layers  
e) Number of neurons per layer 
f) Transfer Function for neurons. 
 



Following are some snapshots of the tool 
 

 
 



 
 
 



 
  
We can also get sample error plots like the one sho wn below 
 

 
 
In our experiments we have varied the number of hidden layer neurons and the number of 
epochs in the network. We have made use of a feed forward back propagation network 



with 2 layers (excluding the input neurons). We have used the Levenberg-Marqardt 
function for training and the default value of LEARNGDM for learning function along 
with Mean Square Error for performance. The tansigmoid is used as a activation function 
for the neurons.  
 

 
 
Experiments 
 

We have conducted experiments to evaluate the performance of both classifiers. We use 
1000 points for each class and vary the amount of training and test data in the proportion 
10-90,35-65,65-35 and 90-10 respectively. We note the performance of SVM under 
different Kernels. We also experiment with number of neurons in hidden layer. The 
format is data followed by figures (for SVM) and then a table showing results for both 
SVM and Neural networks for different proportions of training and test data.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
1) 2-D overlapping data 
 
 

 
 
 
 
 
 
 

 
 

 
 
 
Figure (i) Training data and support vectors for different proportions of training data 
using radial basis function 
 
 
 
 

 Data 1 Data 2 

Mean [1  1] [4  3]  

Variance 
0.8 0.07

0.07 0.5

 
 
 

 
1 0.5

0.5 1

 
 
 

 



 

# of Training Samples 100 350 650 900 

Accuracy Neural Network 
( 10 neurons in hidden layer) 

93.72 95.42 96.85 94.83 

Accuracy RBF 
Kernel 

94.9444 94.8462 95.4286 96 

Accuracy 2nd degree poly. 
Kernel 

94.6667 94.7692 94.1429 94.5000 

Accuracy 3rd degree poly. 
Kernel 

94.5556 
 

94.6154 
 

94.2857 95 

 
Here we have chosen data which has separated means but the variances are such that 
there is a overlapping region. Here we observe that the accuracy of classification for the 
support vector machines is between 94 and 96%. We can observe this in the case of both 
the radial basis and the polynomial kernel (of order 2 and 3) ther performance remains 
similar. Thus SVM performs well with this type of data.  
 
For a 5 layer ANN ther performance varies from around 93% and increases as amount of 
training is increased from 10% to 65%. This is expected as neural networks perform 
better with more training as they become “more aware” of the ranges of data and how to 
react to it. A point to note is the drop in performance of the ANN when 900 of the 1000 
are used for training. This is a good example of over training the network and this is seen 
consistently across all our experiments. Also the training time for neural networks was 
more than that of the SVM.(results are not quantified) 
 
 
2) 2D more overlapping closer means 
 

 
 
 
 
 
 
 
 

 
 

 Data 1 Data 2 

Mean [1  1] [2  2]  

Variance 
0.8 0.07

0.07 0.5

 
 
 

 
0.7 0.21

0.21 0.56

 
 
 

 



 
 
Figure (ii) Training data and support vectors for different proportions of training data 
using radial basis function 
 
 
 

# of Training Samples 100 350 650 900 

Accuracy Neural Network 76.67 77.61 80.14 50.0 
Accuracy RBF 

Kernel 
74.7222 75.0769 75.7143 78 

Accuracy 2nd degree poly. 
kernel 

74.8333 74.6923    73.7143 
 

77 

Accuracy 3rd degree poly. 
kernel 

74.0556 
 

73.5385 NC NC 

 
Our next experiment was to see what happens when we have overlapping data sets. In 
this case support vector machines with radial basis functions have a accuracy between 74 
and 78%. The polynomial kernels( using 2nd and 3rd order) have a similar performance. 
We were unable to get convergence for 3rd order polynomial for large amounts of training 
data.  



In the case of neural networks with 5 neurons the performance increases as the training 
data increases till an extent but there is a decrease when we use 90% of the data for 
training due to overtraining.  
 
As compared to support vector machines neural networks perform poorly when the 
amount of training data is 90%. However when 65% of the data is used neural networks 
perform better. The trade off appears to be that of time. Neural networks take time to 
train so as to achieve good results. 
 
In this case the data is overlapping bringing down the performance of the classifiers quite 
drastically as expected. 
 
3D data 
 
The next set of experiments is with the objective of studying the performance of neural 
network and SVM on 3-D data.  
 
1) 3D overlapping data 
 
 

 
 
 
 
 
 
 
 
 

 
 

# of Training Samples 100 350 650 900 

Accuracy Neural Network 85.55 87.38 88.0 86.32 
Accuracy SVM 
(RBF Kernel) 

88.3889 
 

89.3077 89.2857 92.5000 

 
 
 
 
 
 
 
 
 
 
 

 Data 1 Data 2 

Mean [ 1 1 1 ] [ 3 3 3  ] 

Variance              

1 0 0

0 2 0

0 0 5

 
 
 
 
 

 

1 0 0

0 2 0

0 0 5

 
 
 
 
 

 



2) 3D more overlapping by just increasing the variance. 
 

 
 
 
 
 
 
 
 
 

 

# of Training Samples 100 350 650 900 

Accuracy  
(RBF Kernel) 

87.7778 
 

88.8462 88.2857 87.5000 

 
 
 
 
 
3) 3-D more overlapping with shifted mean 
 

 
 
 
 
 
 
 
 
 

 

# of Training Samples 100 350 650 900 

Accuracy Neural Network 68.16 69.31 72.0 71.33 
Accuracy  

(RBF Kernel) 
   72.2222 
 

70.8462 72.1429 74.5000 

 
 
In the above  three cases we explore data with certain means but with different variance. 
In the case of SVMs when it attains a accuracy of 92.5 % when 100 tests cases are taken 
from each class. In the case of data with same means but with more spread there is a 
decrease in the performance of SVM. Thus we can say that there is a general drop in 
performance of SVM when the data variances are increased.   
 

 Data 1 Data 2 

Mean [ 1 1 1 ] [ 3 3 3  ] 

Variance 

1.5 0 0

0 2.5 0

0 0 5.5

 
 
 
 
 

 

1 0 0

0 2 0

0 0 5

 
 
 
 
 

 

 Data 1 Data 2 

Mean [ 2 2 2 ] [ 1 1 1 ] 

Variance              

1 0 0

0 2 0

0 0 5

 
 
 
 
 

 

1 0 0

0 2 0

0 0 5

 
 
 
 
 

 



Neural Networks in these cases give us poorer performance than SVMs but it is not too 
large to tip the scales in favour of SVMs when data is overlapped.  The difference is not 
very large to clearly say that SVM’s are better. Also if we let neural networks run for 
large number of epochs or vary the number of neurons we may be able to get better 
performance. In conclusion the results obtained in 3-D case are similar to those in 2-D 
case that is neural networks can do well if trained appropriately. However SVM’s can do 
as well if not better in LESSER time. 
 
 
 
SPIRAL DATA  
 
We are going to generate spiral data. That is the data for the 2 classes are spirals which 
coil around each other. This presents one of the most challenging classification problems 
and is inspired from [1] and [2]. We wish to see how our SVM and Neural Networks 
perform with such spiral data. We have attached our code for generation of the spiral data 
at the end of this section. 
 
 
1) Training using the initial set of points   of the spiral 
 
In this case we experimented with what happens when we take the first set of values of 
the spiral and use it to train a SVM and a neural Network and then test it with the next set 
of values. 

 
 
 
Figure (iii) Training data and support vectors for different proportions of training data 
using radial basis function 



 
 

# of Training Samples 100 350 650 900 

Accuracy Neural Network 41.61 45.07 30.71 33.0 
Accuracy RBF 

Kernel 
47.8889 48.1538 20.8571 2.5000 

 
 
In this case the performance is very poor. This is because we are giving only the first set 
of samples to the SVN and neural network. These networks cannot really “predict” what 
will come after that and hence perform very poorly with the test data which is of not 
much resemblance to the original data in terms of its position in the 2-D space.  
 
Note especially that when 900 samples are used in SVM we get 2.5 % accuracy. This is 
because as seen in the figures the surface is drawn such that most of our test data comes 
in a region in which it is definitely going to get misclassified. As the test data arrives in 
order most points arrive in this “incorrect” region.  
 
Another point of interest is that neural network does comparatively better in the 900 
training samples case. This indicates that it draws the separation hyper plane differently 
as compared to SVM.  
 
However we can see that this method is not very instructive in terms of telling us which 
classifier is better. 
 
 
 
2) Spiral Sampled 
 
In order to correct for the above experiment we “sample” the spiral at different equi-
spaced points to obtain the training data set. Then we give the points we did not consider 
in training, for testing. We also have varied the terminating angle of the spiral.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
For angle 2.5 pi  
 

 
Figure (iv) Training data and support vectors for different proportions of training data 
using radial basis function.. 
 
 
 

Fraction of Samples 1/10 1/5 1/2 

ANN with 25 hidden 
neurons 

99.94 99.94 99.94 

 Accuracy Neural Network 
With 10 neurons 

66.89 76.23 81.33 

Accuracy RBF 
Kernel 

86.5000 95.2500 96.5000 

 
 
 
 
 



 
 
For angle 4*pi 
 

Fraction of samples 1/10 1/20 

Accuracy NN 25 hidden 
neurons 

99.9444 99.9474 

Accuracy Neural Network 
10 hidden neurons 

82.77 75.47 

Accuracy with 8th degree 
poly Kernel 

99 94.2105 

Accuracy with  
Rbf Kernel 

55.7778 56.6316 

 
7th degree polynomial kernel accuracy =98.7778 
 
 

 
Figure (v) Training data and support vectors for different proportions of training data 
using 8th order polynomial function using every 20th and 10th sample. 
 



 
Figure (vi) Training data and support vectors for different proportions of training data 
using radial basis  function using every 10th and 20th sample. 
 
 

 
 
This experiment yields some interesting results. Firstly the SVM with a 8th order 
polynomial kernel performs very well with a accuracy of  99% with every 10th sample 
and 94% with every 20th sample respectively. This is a very high accuracy and is similar 
to those reported in [1] (though they have used a different kernel). The polynomial have 
several degrees of freedom is accurately able to trace out the spiral. Below 7th order the 
results are not good. As we increase the angle of the spiral, we need higher and higher 
degree polynomial. The radial basis function is not able to match the performance of the 
polynomial kernels for an angle of 4pi. However for 2.5 pi radial basis gives a 
performance of upto 96.5% which is quite high. 
Using similar training procedures for a neural network with 10 hidden neurons we get a 
poor performance. However when we increased the number of neurons in hidden layer to 
25 we get a 99.94 % accuracy as in [1]. This is observed across both cases 2.5 pi and 4 pi. 
 
In conclusion in the spiral problem both ANN and SVMs can give a similar recognition 
accuracy but ANN’s take a large amount of time to achieve the same result.  
 
 
 
 
 
 
 
 
 
 
 



Conclusion 

 
We have experimented with SVM and Neural Networks for overlapping data and the 
challenging spiral classification problem. It is difficult to emphatically say that one is 
better or worse than the other. However we can at least conclude that neural networks 
take more time to achieve similar results as SVM. The performance of SVM also does 
not appear to depend on the amount of training data while neural networks have suffer 
from a problem of overtraining. So when we are willing to forego some amount of 
accuracy for faster training, SVM appears to be the more attractive option. Moreover 
kernel’s like the polynomial can be made to have high degrees of freedom which can 
trace even complex surfaces like the spiral. However this is at the cost of computational 
cost and time complexity. The computational complexity of SVMs does not depend on 
the dimensionality of the input space unlike in ANN. 
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MATLAB Code for spiral data generation and sampling 
 

Equation of the spiral: 
 

 r= ± θ  
 

 
clear all  
clc  
  
t=linspace(1,4*pi,100)';  
r1=sqrt(t);  
r2=-sqrt(t);  
  
for  i=1:length(t)  
x1(i)=r1(i)*cos(t(i));  
y1(i)=r1(i)*sin(t(i));  
x2(i)=r2(i)*cos(t(i));  
y2(i)=r2(i)*sin(t(i));  
end  
  
X1=[x1' y1']';  
X2=[x2' y2']';  
  
  
j=1;  
k=1;  
for  i=1:length(X1)  
   if (mod(i,10)==0)  
       X1_new(:,j)=X1(:,i);  
       X2_new(:,j)=X2(:,i);  
       j=j+1;  
   else  
       X11_new(:,k)=X1(:,i);  
       X21_new(:,k)=X2(:,i);  
       k=k+1;  
   end  
end  
  
Xtrain=[X1_new X2_new]';  
Xtest=[X11_new X21_new]';  
  
ntrain=length(X1_new);  
ntest=100-ntrain;  
  
  
class = [ones(1,ntrain) 1+ones(1,ntrain)]';  



q = [ones(1,ntest) 1+ones(1,ntest)]';  
  
  
s=svmtrain(Xtrain,class, 'Kernel_function' , 'polynomial' , 'polyorder' ,8, 's
howplot' ,1);  
 
  
p=svmclassify(s,Xtest)  
  
  
miscl=sum(abs(p-q));  
accuracy=100-100*miscl/(2*ntest)  
 
 
 
 
 
 
 



Question 3 
Parzen Window, K nearest neighbors and nearest neighbor technique 

 
In this part we wish to experiment with three non parametric pattern classification 
techniques viz. Parzen Windows, K nearest neighbors and nearest neighbor technique.  
 
The data used for these set of experiments is same as that used for section II of the report. 
For all parts we present the data followed by a table of results for varying amounts of 
training and some figures. It is to be noted that the figures contain all the points 
(training and test points in blue color). Misclassified samples are indicated by a red 
x mark.In the tables R is for Rectangular and G is for Gaussian. 
 
I) Parzen Window Technique 
 
We have developed Matlab code for Parzen Window technique using the rectangular 
window and Gaussian Window function. We encountered the problem in rectangular 
window of having no points in the window around the test point. In such case we 
resolved it by using the knowledge of the priors. We have assumed equal priors. So in 
case of ties or no points in rectangular window we have generated a random number 
which gives 1 50% of the time and 2 the other 50% of the time. The output of this 
random number is assigned as class label to out point under consideration. 
 
In the next section we will present our results for the Parzen Window Technique. 

 
1) For 2-D well separated data 
 
 

 
 

Class I Class II 

Mean [ 1 1 ] [ 4 3 ] 

Covariance 
0.8 0.07

0.07 0.5

 
 
 

 
1 0.5

0.5 1

 
 
 

 

 
Experiments for different values of “window” size were conducted for both Gaussian 
and Rectangular windows. Following are the results 
 
 
 
 
 

 
 
 

 

10 35 65 90    %training 
H G R G R G R G R 

0.15 95.83 94.05 95.77 95.0 96.14 95.14 95.0 94.5 

0.30 95.89 90.06 96.07 94.38 96.29 94.00 95.0 93.5 

0.50 95.94 78.17 96.0 88.39 95.71 91.42 95.5 93.0 

0.75 95.78 62.28 95.85 76.31 95.14 82.29 94.0 84.0 
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Figure (i) showing the plots of Parzen Window technique using h=0.75.The left half 
contains results for classification using Gaussian window and the right half contains 
rectangular window 



From the tables and the figures we can observe that performance of Parzen Window 
technique is better as is expected when we use a Gaussian window. The reason is that it’s 
a smoother estimate of the probability at a given point. Moreover in the case of points 
which are far away from their actual class means (see the figure) we can observe that 
rectangular window method misclassifies the samples while Gaussian window performs 
much better. This can be especially seen in the first set of figures(100 training points). 
This happens because there are no points in a window of 0.75 around those points and the 
points are decided by the flip of a coin method. For smaller window sizes the rectangular 
window seems to do better but not better than the Gaussian window function. There does 
not appear to be any appreciable effect of amount of training data on the impact of the 
classifier.  
 
 
 
2) Overlapping 2-d Data 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Following is the results for accuracy for rectangular and Gaussian windows of 
varying size 

 
 

 
 
 
 

 

 
 

Class I Class II 

Mean [ 1 1 ] [ 2 2 ] 

Covariance 
0.8 0.07

0.07 0.5

 
 
 

 
0.7 0.21

0.21 0.56

 
 
 

 

10 35 65 90    %training 
H G R G R G R G R 

2 78.56 78.83 79.0 79.07 79.29 78.42 75.0 74.0 

1.25 80.17 78.94 78.85 78.31 78.29 78.14 81.5 80.0 

0.75 79.72 77.95 78.54 77.54 77.86 77.29 81.0 81.0 

0.50 79.76 74.44 78.62 76.77 78.0 76.58 81.0 79.0 



Figure (ii)Following are the visualizations of the above for h=1.25  
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In the above case we have chose overlapping data samples. As expected we start 
getting incorrect estimates of the density at the test points leading to large error as 
show in the tabular columns. However even in this case we notice that the Gaussian 
window function still gives a better estimate as it takes into account the contribution 
of all training points. However we can say that in the case of overlapping data the 
classifier as such does not do very well in the overlapped regions. 
 

3)3-D overlapping data 
 
In this section we explore the performace of Parzen Window in 3-D space. 
 

 
 

                  
 

Class I Class II 

 
Mean 

 

 
[3 3 3] 

 
[1 1 1] 

Covariance 1 0 0

0 2 0

0 0 5

 
 
 
 
 

 

1 0 0

0 2 0

0 0 5

 
 
 
 
 

 

 
 

Following is the results for accuracy for rectangular and Gaussian windows of 
varying size 

 
10 35 65 90          

           %Train 

H R G R G R G R G 

0.5 58.61 91.72 74 92.6 80.71 93.42 82 92.5 

1 82 91.33 89.76 92.30 91.14 92.42 92.5 91 

1.5 88.94 90.11 92.93 91.46 93.42 92 92.5 89.5 

2 91.5 89.33 92.92 90.38 93.57 89.85 92.5 88.5 

 
 
 
 
 
 
 
 
 



 
 
 

                  
Figure(iii) Error as a function of number of training points per class for Gaussian 
window(red) and rectangular window(blue) 
 
3-D overlapping data II 
 
 

                  
 

Class I Class II 

 
Mean 

 

 
[3 3 3] 

 
[1 1 1] 

Covariance  
1.5 0 0

0 2.5 0

0 0 5.5
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0 2 0
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The following is the result of varying training data and window size 
 

10 35 65 90          
           %Train 

H R G R G R G R G 

0.15 50 82.83 50.4 84.53 50.57 85.14 50 87.00 

0.5 53.6 86.61 60.15 88.38 63 88.4 63.5  90 

1 67.38 88.11 80.23 88.07 83 88.14 86 88 

1.5 78.33 87.77 85.15 87.53 85.71 87.57 88 87.5 

2 83.72 87.44 87.23 87.07 87.28 87.14 88 86.5 

 
 

 
 
 
 
 

Figure (iv) Sample plot for h=0.50 and 10% training data 
 
 
 
 
 
 
 



 
 

                    
Fig(v) The error plot for h=0.50 

 
 

3-D more overlapping with shifted mean 
 
 

                  
 

Class I Class II 

 
Mean 

[2 2 2] [1 1 1] 

Covariance 1 0 0

0 2 0

0 0 5
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0 2 0

0 0 5

 
 
 
 
 

 

 
 

The results for the above are as follows: 
 

 
10 35 65 90          

           %Train 

H R G R G R G R G 

0.25 50.56 60.67 50.92 67.58 50.28 68.12 53 73 

0.5 50.88 67.55 53.76 72.23 55.71 72.14 56.5 73 

1 57.94 71.67 63.23 73.53 66.85 73.71 70 74.5 

2 69.27 71.72 72.46 75.38 76.71 73.85 78.5 74.5 

 



 
 

 
 

 
 
 



 
 
Figure (vi) showing the plots for h=1 for Gaussian and rectangular window for 
900,650,350 and 100 training samples respectively. 
 

             
Figure (vii) showing the accuracy as a function of training samples  
 
 
In the case of 3-D also Parzen window technique yields similar results as in 2-D case. 
When there is overlap of data there is significant decrease in performance of the 
classifier. The Gaussian window performs better in almost all cases and there is not 
much variation as a function of % of training especially when the data is separable 
which in quite intuitive. Differently distributed data perform better with different 
window sizes. The size of window is particularly important when we use rectangular 
window than in the case of Gaussian window. Hence we need to pick the right 
window size to optimize the performance of our classifier based on Parzen Window. 
We also observe that most of the error in the rectangular technique is because of 
outlier points which have no neighbors and hence are classified based on the 
priors(=0.5 in our case). 
 
 

 
 
 

 



II) K nearest Neighbors and Nearest Neighbor Technique 
 

We have operated on exactly the same data as in Parzen Window technique. The 
organization of this part is as follows. For each experiment we present the data and 
the results of classification using different values of K and by varying the amount of 
data points available in advance (training). The programs are implemented with the 
help of Matlab and the code is attached at the end of the section.  
 
1) For 2-D well separated data 
 

 
 

Class I Class II 

Mean [ 1 1 ] [ 4 3 ] 

Covariance 
0.8 0.07

0.07 0.5

 
 
 

 
1 0.5

0.5 1

 
 
 

 

 
The results are tabulated for the nearest neighbour(K=1) and other values of K. 
 

 
 
 
 
 
 

 
 
 
 
 
We also conducted experiments on the same data using Manhattan distance 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

   %training 
K 10 35 65 90 

1 91.00   91.07  88.57   87.0 

3 90.89 90.00 88.28 89.0 

5 91.11 91.07 88.57 89.0 

7 91.22 91.38 89.71 88.0 

   %training 
K 10 35 65 90 

1 88.67   86.61 85.43 88.0 

3 89.22 88.15 86.28 90.0 

5 89.88 90.15 88.0 87.0 

7 90.56 89.86 89.14 86.0 



 
 
We do not observe a significant improvement of 1 distance metric over the other. 
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Figure (viii) the plots of Nearest neighbour with eucledian distance metric 

 
In the case of K nearest neighbors we observe that classification accuracy varies as K is 
changed. We observe that K=1 does not perform as well as K=3, 5 or 7. This indicates 
that K=1 is not as robust as  higher values of K. We have chosen odd values of K in order 
to prevent ties from occurring when we check which class samples are in a majority 
around our test points. We observe some change in accuracy as the number of samples is 
increased but this is not appreciable to draw a conclusion about any correlation between 
increases in training samples against accuracy. We experimented by using Manhattan 
distance as a metric and found that it performs worse than the Euclidian distance in this 
case.  
 
 
 
 
 
 
 
 
 



 
 
Data Set II 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results for the above data for K=7 are as follows: 
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Class I Class II 

Mean [ 1 1 ] [ 2 2 ] 

Covariance 
0.8 0.07

0.07 0.5

 
 
 

 
0.7 0.21

0.21 0.56

 
 
 

 

   %training 
K 10 35 65 90 

1 43.89   38.15 42.57 47.0 

3 53.11 45.23 50.28 60.0 

5 54.33 50.46 52.57 59.0 

7 59.67 56.0 56.28 61.0 
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Figure (ix) showing K=7 classification for overlapping data 

 
 
In this case also we observe that K=1 is not as good as higher values for K. K=7 in this 
case yields us better results than other values of K. In this case the data is highly 
overlapped and hence we cannot be drawing definite conclusions about which classifier is 
better. But we can say that it is better to use a value of K greater than one to have a better 
accuracy of the class of our test samples. 
 
 
For 3-D data I 
 

                  
 

Class I Class II 

 
Mean 

 

 
[3 3 3] 

 
[1 1 1] 

Covariance 1 0 0

0 2 0

0 0 5
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0 2 0

0 0 5

 
 
 
 
 

 

 
The results for various K are shown below: 
 
       %Tr 
K 

10 35 65 90 

1 81 81.53 82.85 87 
3 84.67 85.23 86 86 

5 85.11 86.15 86 86 

7 85.33 85.69 86.28 87 

9 85.44 85.69 86.85 86 
11 84.89 86.16 87.14 85 
13 85 86.46 87.42 86 



 
 
 
 
 
 
 

 
 

Figure (x) showing K=7 classification for overlapping data with 100 and 350 training 
samples 

 
 
 
 
For 3-D data II 
 

                  
 

Class I Class II 

 
Mean 

 

 
[3 3 3] 

 
[1 1 1] 

Covariance  
1.5 0 0

0 2.5 0

0 0 5.5
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Results for KNN  
 
 

       %Tr 
K 

10 35 65 90 

1 65.67 68.61 67.42 72 
3 73.67 73.38 75.71 76 

5 74.55 76 75.42 81 

7 73.89 75.38 76.86 80 

9 74.33 77.23 77.14 80 
11 74.55 77.69 75.71 82 
13 75.44 77.69 76.28 85 

 
 
 
3-D data set III 
 

                  
 

Class I Class II 

 
Mean 

[2 2 2] [1 1 1] 

Covariance 1 0 0

0 2 0

0 0 5

 
 
 
 
 

1 0 0

0 2 0

0 0 5
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       %Tr 
K 

10 35 65 90 

1 29.44 31.23 30.28 33 
3 39.77 37.23 38.85 38 

5 40.77 39.23 35.71 39 

7 42.77 38.15 43.42 47 

9 43.11 42.76 41.42 47 
 
In this case the percentage accuracy of classification is very poor as the data is highly 
overlapped. The K=9 case gives a comparatively better performance than other cases 
once again reinforcing the fact that checking the nearest neighbor alone can lead to 
incorrect classification. 
 
 
 



Conclusions 
 
In this section we have performed experiments for classifying overlapping data in 2-D 
and 3-D for varying amounts of overlap using the Parzen Window and K nearest 
neighbor technique. We find that for Parzen Window using a Gaussian window function 
results in better performance than rectangular window. K nearest neighbors out performs 
nearest neighbor technique and is more robust. We also observe that KNN does not suffer 
from the problem that Parzen window(rectangular kernel) has, that points of a class 
which are very far from its means are not classified based on priors in KNN. So these 
points are well classified by KNN.  Comparing Parzen window with KNN in our 
experiments we observe that in several cases Parzen windows perform better than KNN. 
This may be contrary to what is observed in practice. We believe this is because we 
experimented with mainly overlapping data in our quest to determine which classifier 
performs better when the classification problem is very difficult. We have used 2-D and 
3-D synthetic data mainly with the objective of ease of visualization.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



MATLAB CODE for Parzen Window and KNN 
 

The following codes are contain “script files” we wrote up so as to speed up testing of 
our data. The script files essentially take the data and break it up into training and test 
data performs classification and reports the accuracy of the classifier and also plots the 
results of classification and the error plots. 
 
Script file for Parzen Window Technique 
 
function  [e1 e2]=simulate_parzen(X1,X2,h)  
  
%variables to hold size of input data  
[m n]=size(X1);  
[F d]=size(X2);  
z=1;  
  
%Gives different training percentages  
H=[100 350 650 900];  
  
%2-D case  
if (d==2)  
    for  I=1:4  
        plot(X1(:,1),X1(:,2), '.' );hold on;plot(X2(:,1),X2(:,2), 'o' );  
        
e1(z)=parzen(X1(1:H(I),:),X2(1:H(I),:),[X1(H(I)+1:m ,:);X2(H(I)+1:m,:)],
[ones(m-H(I),1);2*ones(m-H(I),1)],h,1);  
        figure  
        plot(X1(:,1),X1(:,2), '.' );hold on;plot(X2(:,1),X2(:,2), 'o' );  
        
e2(z)=parzen(X1(1:H(I),:),X2(1:H(I),:),[X1(H(I)+1:m ,:);X2(H(I)+1:m,:)],
[ones(m-H(I),1);2*ones(m-H(I),1)],h,2);  
        z=z+1;  
    end  
end  
  
%3-D case  
if (d==3)  
    for  I=1:4  
        plot3(X1(:,1),X1(:,2),X1(:,3), '.' );hold 
on;plot3(X2(:,1),X2(:,2),X2(:,3), 'o' );  
        
e1(z)=parzen(X1(1:H(I),:),X2(1:H(I),:),[X1(H(I)+1:m ,:);X2(H(I)+1:m,:)],
[ones(m-H(I),1);2*ones(m-H(I),1)],h,1);  
         
        figure  
        plot3(X1(:,1),X1(:,2),X1(:,3), '.' );hold 
on;plot3(X2(:,1),X2(:,2),X2(:,3), 'o' );  
        
e2(z)=parzen(X1(1:H(I),:),X2(1:H(I),:),[X1(H(I)+1:m ,:);X2(H(I)+1:m,:)],
[ones(m-H(I),1);2*ones(m-H(I),1)],h,2);  
        z=z+1;  
    end  
end  
  



plot(H,e1(1:z-1));hold on;plot(H,e2(1:z-1), 'r' )  
  
%Compute accuracy  
accuracy_rectangular=100-e1  
accuracy_gaussian=100-e2 
 
 
 
 

Code for Parzen Window based classification using r ectangular and 
Gaussian window functions. 
 
function [error]=parzen(X1,X2,Xtest,group,h,ch)  
  
%variables to hold size of input data ch gives the type of window 
function to use  
[m d]=size(X1);  
[p d]=size(X2);  
[Q R]=size(Xtest);  
  
%counts the number of misclassified points  
misc=0;  
  
%Rectangular Window  
if (ch==1)  
    for  k=1:Q  
        px0w1=0;  
        px0w2=0;  
        for  i=1:m  
            count=0;  
            for  j=1:d  
                %applying condition  
                if (abs((X1(i,j)-Xtest(k,j))/h) <0.5)  
                    count=count+1;  
                end  
            end  
            if (count==d)  
                px0w1=px0w1+1;  
            end  
        end  
        for  i=1:p  
            count=0;  
            for  j=1:d  
                %applying condition  
                if (abs((X2(i,j)-Xtest(k,j))/h) <0.5)  
                    count=count+1;  
                end  
            end  
            if (count==d)  
                px0w2=px0w2+1;  
            end  
        end  
  
        %Making a decision; use a toss of a coin to resolve  
conflicts/ties  



        if (px0w1>px0w2)  
            class=1;  
        elseif (px0w1<px0w2)  
            class=2;  
        else  
            chance=randperm(2);  
            if (chance(1) == 1)  
                class =1;  
            else  
                class =2;  
            end  
        end  
  
        %print misclassified points in red  
        if (class~=0 && group(k)~=class)  
        if (d==2),    plot(Xtest(k,1),Xtest(k,2), 'rX' );hold on  
        end  
        if (d==3),    plot3(Xtest(k,1),Xtest(k,2),Xtest(k,3), 'rX' );hold 
on  
        end  
            misc=misc+1;  
        end  
         
         
    end  
end  
  
%Gaussian Window  
if (ch==2)  
    for  k=1:Q  
      px0w1=0;  
      px0w2=0;  
        for  i=1:m  
            px0w1=px0w1+exp(-(0.5)*((X1(i,:)-Xtest( k,:))*(X1(i,:)-
Xtest(k,:))')/(h^2));  
        end  
        for  i=1:p  
            px0w2=px0w2+exp(-(0.5)*((X2(i,:)-Xtest( k,:))*(X2(i,:)-
Xtest(k,:))')/(h^2));  
        end  
  
        %Making a decision; use a toss of a coin to resolve  
conflicts/ties  
        if (px0w1>px0w2)  
            class=1;  
        else  
            class=2;  
        end  
  
        %print misclassified points in red  
        if (group(k)~=class)  
          if (d==2),  plot(Xtest(k,1),Xtest(k,2), 'rX' );hold on 
          end  
          if (d==3)  
              plot3(Xtest(k,1),Xtest(k,2),Xtest(k,3 ), 'rX' );hold on;  
          end  



            misc=misc+1;  
        end  
    end  
end  
  
error=(misc/Q)*100;  
hold off 
 

 
Code for K nearest neighbors. It takes the data and  the number of 
nearest neighbors as inputs and does all the necess ary tests. 
 
function  simulate_knn(X1,X2,k)  
  
%variables to hold size of input data  
[m n]=size(X1);  
[F d]=size(X2);  
z=1;  
  
%Gives different training percentages  
H=[100 350 650 900];  
  
if (d==2)  
    for  I=1:4  
        plot(X1(:,1),X1(:,2), '.' );hold on;plot(X2(:,1),X2(:,2), 'o' );  
        Xtrain=[X1(1:H(I),:);X2(1:H(I),:)];  
        Xtest=[X1(H(I)+1:m,:);X2(H(I)+1:m,:)];  
        group=[ones(H(I),1);2*ones(H(I),1)];  
        expec=[ones(m-H(I),1);1+ones(m-H(I),1)];  
        cl=knnclassify(Xtest,Xtrain,group,k);  
        for  t=1:length(cl)  
            if (cl(t)-expec(t)~=0)  
                plot(Xtest(t,1),Xtest(t,2), 'rX' );  
            end  
        end  
    e(z)=(sum(abs(cl-expec))/(m-H(I)))*100;  
    z=z+1;  
    figure  
    end  
end  
if (d==3)  
    for  I=1:4  
        plot3(X1(:,1),X1(:,2),X1(:,3), '.' );hold 
on;plot(X2(:,1),X2(:,2),X2(:,3), 'o' );  
        Xtrain=[X1(1:H(I),:);X2(1:H(I),:)];  
        Xtest=[X1(H(I)+1:m,:);X2(H(I)+1:m,:)];  
        group=[ones(H(I),1);2*ones(H(I),1)];  
        expec=[ones(m-H(I),1);1+ones(m-H(I),1)];  
        cl=knnclassify(Xtest,Xtrain,group,k, 'cityblock' );  
        for  t=1:length(cl)  
            if (cl(t)-expec(t)~=0)  
                plot3(Xtest(t,1),Xtest(t,2),Xtest(t ,3), 'rX' );  
            end  
        end  
        e(z)=(sum(abs(cl-expec))/(m-H(I)))*100;  
        z=z+1;  



        figure  
    end  
end  
  
figure  
plot(e(1:z-1))  
  
%Accuracy  
accuracy=100-e  
 
 
 
  
 
 
 


