Bridges

Summer 08

- 1. Let C be the Cantor set. For all $x \in [0, 1)$, let $.x_1x_2x_3...$ be the ternary decimal expansion for x, and furthermore, if $x = \frac{k}{3^n}$ we require only finitely many nonzero elements of the expansion to ensure uniqueness. Let \mathcal{A} be the sigma-algebra generated by the sets $\{x : \exists i \text{ with } x_i = 1\}$. Prove or disprove $C \in \mathcal{A}$.
- 2. Suppose $|g_n(x)| \leq M$ for all $n \geq 1$ and all $x \in [0, 1]$ and that

$$\int_{a}^{b} g_n(x) dx \to 0$$

whenever $0 \leq a \leq b \leq 1$. Show that

$$\int_0^1 f(x)g_n(x)dx \to 0$$

for all $f \in L^1([0,1])$.

3. Let (X, \mathcal{M}, μ) be a finite measure space. Assume that $f_n \to f \mu$ -a.e. and

$$\sup_n \int_X |f_n|^{p_0} < \infty$$

for some $1 < p_0 < \infty$. Show that $f_n \to f$ in L^1 .

- 4. Let μ be a measure on [0,1] by μ({0}) = μ({1}) = 1, and for all (a,b) ⊂ [0,1], μ(a,b) = bln(b) aln(a) b + a. Let f ∈ C[0,1] and show
 (a) ∫_a^b fdμ = ∫_a^b f(x)ln(x)dx + f(0)χ_(a,b)(0) + f(1)χ_(a,b)(1).
 (b) f ∈ L¹(μ).
- 5. Let $f \in L^1([0,1])$ and assume that

$$\int_{0}^{1} \frac{|f(t)|}{(1-t)^{2}} dt < \infty$$

Let $f_n(x) = f(x^{1/n})$. Show that $\sum_{n=1}^{\infty} f_n(x)$ converges absolutely a.e. $x \in [0, 1]$.