MA598 - Complex Analysis Qual Prep - Summer 2014 Instructor: Pete Weigel Supplement to PS3 - Review of relevant concepts

7/3/2014

Theorem 1 (Cauchy's Integral Theorem) Let Ω be a simply connected open subset of \mathbb{C} and suppose $\gamma : [0,1] \to \Omega$ is a rectifiable curve in Ω . Then for any $f \in \mathcal{O}(\Omega)$,

$$\int_{\gamma} f(z) \, dz = 0.$$

Exercise Suppose that $\Omega \subset \mathbb{C}$ has compact closure, with $\partial\Omega$ smooth. Show that if a holomorphic map f extends continuously to $\partial\Omega$, then the conclusion remains valid for all rectifiable curves in $\overline{\Omega}$.

Theorem 2 (Morera's Theorem) Suppose Ω is a domain, and $f : \Omega \to \mathbb{C}$ a continuous function. Then $f \in \mathcal{O}(\Omega)$ if

$$\int_{\gamma} f(z) \, dz = 0$$

for all triangles γ in Ω .

Theorem 3 (Cauchy's Integral Formula) Let $\Omega \subset \mathbb{C}$ be a domain and $f \in \mathcal{O}(\Omega)$. Suppose for $z_0 \in \Omega$ and r > 0 that $\overline{B_r(z_0)} \subset \Omega$. Then

$$f(z_0) = \frac{1}{2\pi i} \int_{C_r(z_0)} \frac{f(z)}{z - z_0} \, dz,$$

where the integral is computed using the positive orientation.

Theorem 4 (Residue Theorem) Suppose Ω is a simply connected domain, $a_1, \dots, a_n \in \Omega$, and $f \in \mathcal{O}(\Omega - \{a_1, \dots, a_n\})$. Let γ be a positively oriented simple closed curve which encloses $a_i, 1 \leq i \leq n$. Then

$$\int_{\gamma} f(z) \, dz = \sum_{i=1}^{n} \operatorname{Res}(f, a_i),$$

where $\operatorname{Res}(f, a_i)$ denotes the residue of f at a_i .

Remark For those who have taken Algebraic Topology, think about this result from the perspective of the de Rham cohomology of the punctured plane.