
ECE 662:Pattern Recognition and

Decision-Making Processes

Homework Assignment Two

Collaborators: None

April 16, 2008

1

1 Question 1: Numerical Experiments with

the Fisher Linear discriminant

Here the issue to address is the following: We consider observations X coming
from two classes C1 and C2 and a set of training data divided into the sets
χ1(training data from class 1) and χ2(training data from class 2). We learned
that an adequate hyperplane can be drawn to appropriately separate the
observations into the classes C1 and C2 by using the vector ωo which is the
argmax of the cost function

J(ω) =
ωSBω

ωSWω

where

• SB is the ”between classes scatter matrix” and is defined in Duda and
Hart.

• SW is the ”within classes scatter matrix” and is defined in Duda and
Hart.

The solution ωo is the Fisher linear discriminant and is defined as ωo =
S−1

W (m1 − m2) where m1 and m2 are the (training) sample means of each
class.

The question raised is the following: why not instead optimize the fol-
lowing cost function

J(ω) = ωSBω

In this case the solution would be ω
(modified)
o = (m1 − m2), which we will

refer to here as the modified discriminant. To demonstrate and explain the
differences (if any) between the two approaches we implement an adequate
numerical experiments to compare the two approaches.

1.1 Numerical Experiments

The cost function

J(ω) =
ωSBω

ωSWω

can be interpreted as maximizing the projected difference in the means while
minimizing the projected class variances. In the above cost function it can be
shown that the projected difference in the means is controlled by the term in
the numerator ωSBω while the projected class variances are controlled by the

2

term in the denominator ωSWω. Hence the choice of only using the modified
cost function

J(ω) = ωSBω

reduce to neglecting to minimize the projected class variances in the opti-
mization procedure. That is we fails to take into consideration the effect
”within classes scatter”. Therefore the comparison of the two methods is
done by evaluating the effect of ”within classes scatter”. To this end, we
compare the two approaches with three cases. First, we compare the sep-
aration performance of the two methods when the two classes in the data
have both small ”within classes scatter”. Second, we compare them when
these two classes both have a large ”within classes scatter”. Finally, the per-
formances are compared when one class has small ”within classes scatter”
while the other one has large ”within classes scatter”. In our experiment
the data was chosen as follows: The original observation data X comes from
two bi-variate Gaussian vector and the two classes have the same a-priori
probabilities. Thus, the resulting observation data after the projection (i.e.

Y = ωT
o X or Y = ω

(modified)
o

T
X) might be realization from two Gaussian

random variables (one for each 1-feature class) and the probabilities of mis-
classification can be easily calculated. In each case below we visualize X and
Y . Moreover, the performance of the projection methods is quantified by
computing the probability of misclassification from observing Y . The mis-
classification performances are with respect to a Bayesian Framework. For
a more robust performances comparison, large number of data samples were
used in testing the methods.

1.1.1 Case1: Small ”within classes scatter” for both C1 and C2

When both classes have small ”within classes scatter” it is observed in Fig.1
and Fig.2 that the observation data obtained after projection in both cases
have good separation. However the performance is better when the cost
function includes the ”within classes scatter” information. Again, although
both performances are acceptable, the probability of misclassification after
the modified discriminant projection in Fig.2 is 3.6 times larger than when the
Fisher cost function is utilized (i.e. the cost function leading Fisher Linear
Discriminant) as shown in Fig.1.

1.1.2 Case2: Large ”within classes scatter” for both C1 and C2

When both classes have large ”within classes scatter” it is observed in Fig.3
and Fig.4 that the observation data obtained after projection in both cases
have relatively poor separation. After the Fisher discriminant projection the

3

−5 0 5 10
0

5

10

15

Original Observations: N = 10000, P(ω
1
) = 0.5, P(ω

2
) =0.5

1st Component of the feature vector

2n
d
 C

o
m

p
o

n
en

t
o

f
th

e
fe

at
u

re
 v

ec
to

r

Class 1
Class 2

−15 −10 −5 0 5 10 15 20 25
0

50

100

150

200

250

300
Observations after FISHER projection: Probability of Misclassification: 0.001875

Separation

Figure 1: FISHER discriminant when both classes have small ”within classes
scatter”

−6 −4 −2 0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

Original Observations: N = 10000, P(ω
1
) = 0.5, P(ω

2
) =0.5

1st Component of the feature vector

2n
d
 C

o
m

p
o

n
en

t
o

f
th

e
fe

at
u

re
 v

ec
to

r

Class 1
Class 2

−40 −30 −20 −10 0 10 20 30 40
0

50

100

150

200

250

300
Observation after MODIFIED projection: Probability of Misclassification: 0.00675

Figure 2: MODIFIED discriminant when both classes have small ”within
classes scatter”

4

probability of misclassification was 17.8% and after the projection with the
modified discriminant, the probability of misclassification is 22.9 %. Then
although both separation are relatively poor, the Fisher discriminant method
performs better in this case also.

−20 −15 −10 −5 0 5 10 15 20 25
−20

−10

0

10

20

30

Original Observations: N = 10000, P(ω
1
) = 0.5, P(ω

2
) =0.5

1st Component of the feature vector

2n
d
 C

o
m

p
o

n
en

t
o

f
th

e
fe

at
u

re
 v

ec
to

r

Class 1
Class 2

−4 −3 −2 −1 0 1 2 3 4 5
0

50

100

150

200

250

300
Observations after FISHER projection: Probability of Misclassification: 0.178

Figure 3: FISHER discriminant when both classes have large ”within classes
scatter”

1.1.3 Case3: Small ”within classes scatter” for both C1 and large

”within classes scatter” C2

Here the original data is such that one class have a small ”within classes
scatter” while the other have a large ”within classes scatter”. We still observe
in the performance results in Fig.5 and Fig.6 that better performance are
achieved when the Fisher linear discriminant as compared to the so-called
modified discriminant.

In all the above cases the Fisher discriminant have better performance
than the modified discriminant in terms of classes separability after projec-
tion. In fact the these numerical experiments are just supporting what one
would expect from a qualitative analysis of the two methods. The Fisher dis-
criminant is attained by optimizing a cost function that encapsulates two cri-
terion that are both crucial to separability of classes after projection. These
are criterion are 1) Maximizing the projected difference in the means and 2)

5

−20 −15 −10 −5 0 5 10 15 20 25
−10

−5

0

5

10

15

20

25

Original Observations: N = 10000, P(ω
1
) = 0.5, P(ω

2
) =0.5

1st Component of the feature vector

2n
d
 C

o
m

p
o

n
en

t
o

f
th

e
fe

at
u

re
 v

ec
to

r

Class 1
Class 2

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

50

100

150

200

250

300
Observations after MODIFIED projection: Probability of Misclassification: 0.229

Figure 4: MODIFIED discriminant when both classes have small ”within
classes scatter”

Minimizing the projected class variances. By using the modified discriminant
one neglect the second criterion in the cost function hence performance is
bound to degrade a certain amounts. The amount of performance degrada-
tion depends on the datasets under consideration.

6

−20 −15 −10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

25

Original Observations: N = 10000, P(ω
1
) = 0.5, P(ω

2
) =0.5

1st Component of the feature vector

2n
d
 C

o
m

p
o

n
en

t
o

f
th

e
fe

at
u

re
 v

ec
to

r

Class 1
Class 2

−4 −2 0 2 4 6 8 10
0

50

100

150

200

250

300
Observations after FISHER projection: Probability of Misclassification: 0.088875

Figure 5: FISHER discriminant when one class has large ”within classes
scatter” and another a small ”within classes scatter”

−20 −15 −10 −5 0 5 10 15
−10

−5

0

5

10

15

20

25

Original Observations: N = 10000, P(ω
1
) = 0.5, P(ω

2
) =0.5

1st Component of the feature vector

2n
d
 C

o
m

p
o

n
en

t
o

f
th

e
fe

at
u

re
 v

ec
to

r

Class 1
Class 2

−40 −20 0 20 40 60 80 100
0

50

100

150

200

250

300
Observations after Modified projection: Probability of Misclassification: 0.106

Figure 6: MODIFIED discriminant when one class has large ”within classes
scatter” and another a small ”within classes scatter”

7

1.2 Codes for the problem one.

HOMEWORK TWO - PROBLEM 1

%% Author: ************************

%% GENERATION OF DATASETS

clear all;

clc

% Correlation coefficent of features within a class

rho1 = [1];

rho2 = [1];

% Total number of observations N.

N = rand(1,10000);

%The number of samples from class 1 with prior probability P(w1)=0.5.

N1 = sum(N < 0.5);

%The number of samples from class 1 with prior probability P(w1)=0.5.

N2 = sum(N > 0.5);

%Mean of Class 1.

u1 = [0 8];%u1 = [1 2];

%Mean of Class 2.

u2 = [5 6];

%Covariance matrices of Class 1

Sigma1 = 20*[rho1 0.6 ; 0.6 rho1];

%Covariance matrices of Class 2

Sigma2 = 2*[rho2 0.6; 0.6 rho2];

%Generation of N1 class 1 data

r1 = mvnrnd(u1,Sigma1,N1);

%Generation of N2 class 2 data

r2 = mvnrnd(u2,Sigma2,N2);

% Training data (class 1)

r1_t = r1(1:1000,:);

% Training data (class 2)

r2_t = r2(1:1000,:);

% Observed data (class 1)

r1_o = r1(1001:end,:);

% Observed data (class 2)

r2_o = r2(1001:end,:);

subplot(2,1,1);

plot(r1_o(:,1),r1_o(:,2),’x’); hold on;

plot(r2_o(:,1),r2_o(:,2),’or’);

title(’Original Observations: N = 10000, P(\omega_1) = 0.5, P(\omega_2) =0.5’);

8

legend(’Class 1’,’Class 2’);

xlabel(’1^{st} Component of the feature vector’);

ylabel(’2^{nd} Component of the feature vector’);

%% FISHER LINEAR DISCRIMINANT ANALYSIS AND VARIATIONS

%Mean and Scatter matrices for classes

%Mean and Scatter matrices

m1 = mean(r1_t);

m2 = mean(r2_t);

% Scatter matrix: class 1

%--

S1_11 = zeros(length(r1_t),1);S1_12 = zeros(length(r1_t),1);

S1_21 = zeros(length(r1_t),1);S1_22 = zeros(length(r1_t),1);

for k = 1:1:length(r1_t)

S1.([’M’,num2str(k)]) = (r1_t(k,:)-m1)’*(r1_t(k,:)-m1);

S1_11(k) = S1.([’M’,num2str(k)])(1,1);S1_12(k) = S1.([’M’,num2str(k)])(1,2);

S1_21(k) = S1.([’M’,num2str(k)])(2,1);S1_22(k) = S1.([’M’,num2str(k)])(2,2);

end

Sc1 = [mean(S1_11) mean(S1_12); mean(S1_21) mean(S1_22)];

% Scatter Matrix: Class 2

%--

S2_11 = zeros(length(r2_t),1);S2_12 = zeros(length(r2_t),1);

S2_21 = zeros(length(r2_t),1);S2_22 = zeros(length(r2_t),1);

for k = 1:1:length(r2_t)

S2.([’M’,num2str(k)]) = (r2_t(k,:)-m2)’*(r2_t(k,:)-m2);

S2_11(k) = S2.([’M’,num2str(k)])(1,1);S2_12(k) = S2.([’M’,num2str(k)])(1,2);

S2_21(k) = S2.([’M’,num2str(k)])(2,1);S2_22(k) = S2.([’M’,num2str(k)])(2,2);

end

Sc2 = [mean(S2_11) mean(S2_12); mean(S2_21) mean(S2_22)];

%--

%Computation of within class scatter matrix.

%S_w = (Sc1 + Sc2); % for the Fisher Linear Discriminant

S_w =eye(2); % for the Modified Linear Discriminant

S_B = (m1-m2)’*(m1-m2);

% Resulting projection vector

w_o = inv(S_w)*(m1’-m2’);

%% ViSUALIZATION AND PERFORMANCE

subplot(2,1,2);

y1 = r1_o*w_o;

y2 = r2_o*w_o;

hist(y1,50); hold all ;

9

h1 = findobj(gca,’Type’,’patch’);

set(h1,’FaceColor’,’r’,’EdgeColor’,’w’)

hist(y2,50)

h2 = findobj(gca,’Type’,’patch’);

set(h2,’FaceColor’,’b’,’EdgeColor’,’w’)

%Computation of Classification Error

mm1 = mean(y1);

mm2 = mean(y2);

mm = mean([mm1 mm2]);

P_error = (sum(y2>mm)+sum(y1<mm))/(length(y1)+length(y2))

plot([mm mm],[0 300],’k’);

title([’Probability of Misclassification:’,num2str(P_error)]);

10

2 Question 2: Neural Network and Support

Vector Machine Classifier.

In this problem the objective are the following:

• Perform numerical experiments to investigate selected aspects of clas-
sification via the Neural Network approach.

• Perform numerical experiments to investigate selected aspects of clas-
sification via Support Vector Machine.

• Design an experiment to compare the approaches for a selected dataset.

2.1 Part 1: Experiments with Neural Network classi-

fication

2.1.1 Experiment 1: Neural Network and Classes separation

This first experiment is targeted at evaluating the performance of Neural
Networks as a function of the separation of the classes in the data. For better
visualization, we use here two classes. The two classes in the observation data
are observations from bivariate Gaussian vectors with covariance matrices
Σ1 and Σ2. We start with a dataset with good separation corresponding to
bivariate Gaussian vectors with covariance matrices Σ

(o)
1 and Σ

(o)
2 as shown in

the top left plot in Fig.7. Separation between classes is induced by generating
new datasets that comes from bivariate Gaussian vectors with covariance
matrices aΣ

(o)
1 and aΣ

(o)
2 where a > 1 is a scaling parameter that indicate

the level of classes separation (i.e. separation parameter). This is illustrated
in Fig.7 where several datasets with varying degree of classes separation are
shown. As expected classes separation decrease as the value of the scaling
parameter a increases.

In our implementation script we adapted a Neural Network classifier that
was downloaded from the location http://isp.imm.dtu.dk/toolbox/ann/. This
program implements a Neural Network binary classifier using a logistic sig-
moidal function. The network is trained using a BFGS optimization algo-
rithm. For each dataset (i.e. different value of a which means different level
of classes separation), we use training sample (Ntraining = 50 samples) to
train the network and then use a test sample (Ntest = 200 samples) to assess
classification performance by computing the misclassification error rate from
the output of the network. The number of hidden layers was set to 10 here.
The results are plotted in Fig.8. The key observation for this experiment is

11

−4 −2 0 2 4 6 8 10
2

4

6

8

10

12
Value of separation Parameter a is: 1

1st Component of the feature vector

2n
d
 C

o
m

p
o

n
en

t
o

f
th

e
fe

at
u

re
 v

ec
to

r

Class 1
Class 2

−20 −10 0 10 20
−5

0

5

10

15

20
Value of separation Parameter a is: 7

1st Component of the feature vector

2n
d
 C

o
m

p
o

n
en

t
o

f
th

e
fe

at
u

re
 v

ec
to

r

Class 1
Class 2

−15 −10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

25
Value of separation Parameter a is: 13

1st Component of the feature vector

2n
d
 C

o
m

p
o

n
en

t
o

f
th

e
fe

at
u

re
 v

ec
to

r

Class 1
Class 2

−20 −10 0 10 20 30
−10

0

10

20

30
Value of separation Parameter a is: 20

1st Component of the feature vector

2n
d
 C

o
m

p
o

n
en

t
o

f
th

e
fe

at
u

re
 v

ec
to

r

Class 1
Class 2

Figure 7: Illustration of class separation with the separation parameter a.
Large a means less separation

to notice that the misclassification error rate of the Neural Network increase
linearly with classes separation.

2.1.2 Experiment 2: Neural Network and number of hidden layers

Now we seek to use the same data set and assess the effect of the number
of hidden layers on classification performance. We choose a dataset with
separation corresponding to a separation parameter of a=5 (cf. Fig.7) for
visualization. We then vary number of hidden layers from 1 to 20 and com-
pute the misclassification rate each time. The results are plotted in Fig.9.
From the figure it seems that the number of hidden layers did not have a
major effect on classification performance in this case. The experiment was
repeated for different level of separation and similar results were obtained.
We postulate here that for this dataset a limited number of layers were suf-
ficient to attain the upper bound on what a Neural Network is able to do
in turn of classifying the data. Thus, there is no added gain with more hid-
den layers. Since adding more layers increase computational cost, it seems
that one should consider (if possible) the minimal number of layers that is
sufficient for maximum possible performance with a given type of dataset.

12

2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Value of separation parameter a

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

R
at

e

Classification Performance (Neural Nets) versus Classes Separation

Figure 8: Neural Network classification and classes separation experiment.
Number of hidden layers used Nh=10

2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Classification performance and number of hidden layers

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

R
at

e

Number of hidden layers

Figure 9: Classification performance versus number of hidden layers

13

2.2 Experiments with the Support Vector Machine

2.2.1 Illustration of Support Vector Machine Classification

Here we discuss the support vector machine classifier that is used in the
problem. In our implementation script for this portion we have used the
MATLAB functions svmtrain and svmclassify. svmtrain is used with the
training dataset and generate the a set of parameters that are used by svm-
classify to separate the test dataset. The svmtrain was set to use a linear
kernel (i.e. dot product). More information on the functions can be found
through MATLAB help. We use similar data set as above. The specific
dataset (among the above variations) is the one corresponding to a separa-
tion parameter of a=5 (cf. Fig.7). The size of training sample is Ntraining

= 50 samples and the size of the test sample is Ntest = 200 samples. The
results of the classification via Support Vector Machine are shown in Fig.10.
The misclassification error rate in this case was equal to 0.04.

−6 −4 −2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

First component of feature vector

S
ec

on
d

co
m

po
ne

nt
 o

f f
ea

tu
re

 v
ec

to
r

Illustration of Support Vector Machine Computation

Class 1(training)
Class 1 (classified)
Class 2 (training)
Class 2 (classified)
Support Vectors

Figure 10: A Support Vector Machine classification example. Misclassifica-
tion Error is 0.04.

2.2.2 Support Vector Machine and Classes separation

Using the same approach outlined with the Neural Network case, we week
to evaluate the performance of Support Vector Machine classification as a
function of class separation. The same settings and sample sizes used for the
Neural Network classifier is also used here. The results attained are outlined

14

in Fig.11. As in the case of Neural Network, it can be observed from the
plot that here also the misclassification rate increase linearly with classes
separation. For the datasets we used the two methods seems to show similar
behaviors. To verify this we design a more robust experiment for a more
direct comparison.

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Classification Performance (of SVM) versus Classes Separation

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

R
at

e

Value of separation parameter a

Figure 11: Support Vector Machine performance as a function of Neural as
a function of classes separation

2.2.3 Comparison of Support Vector Machine and Neural Net-

works

To compare the two methods in a more robust manner. The Neural Network
here has 10 hidden layers. We compare the methods by using datasets at
different separation. At each separation, we generate a training dataset and
testing dataset that are used by both methods. A misclassification error rate
is computed for each method. To guarantee robustness in the comparison,
the separation is maintained and the test is repeated 20 times. The 20
misclassification error rates are averaged. The following procedure is done
for separation level. Therefore we can robustly compare the methods at each
separation (at least for this type of datasets). The results are plotted in
Fig.12. The following is observed: When the two classes are relatively well
separated (i.e. small values for a), the Support Vector Machine performs
slightly better with this dataset. As the separation decreases, it appears that
the two methods perform equally. It was however noticed in this comparison

15

that the computation of the Neural Network was faster than that of the
Support Vector Machine classifier. Hence here one would clearly choose the
Neural Network Classifier if computational time was an issue.

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Value of separation parameter a

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

R
at

e

Comparison of Neural Networks versus Support Vector Machine

Neural Networks
Support Vector Machine

Figure 12: Comparison of Support Vector Machine and Neural Network clas-
sifiers

16

2.3 Scripts for problem 2

1. Script for SVM experiment

%% HOMEWORK TWO - PROBLEM 2

%Author: **********************

%% GENERATION OF DATASETS

clear all;

clc

%% THE DATASET

%Training dataset.

x = [r1_t ; r2_t];

%Labels of training dataset.

t =[zeros(length(r1_t),1); ones(length(r2_t),1)];

% Testing dataset.

x_test = [r1_o ; r2_o];

% Labels of testing dataset (used to compute Performance).

t_test =[zeros(length(r1_o),1); ones(length(r2_o),1)];

%% USING MATLAB SVM FUNCTIONS

svmStruct = svmtrain(x,t,’showplot’,true);

%Performing the classification (MATLAB FUNCTION)

classes = svmclassify(svmStruct,x_test,’showplot’,true);

%Misclassification rate Computation

P(k)= sum(abs(classes-t_test))/length(t_test)

end

17

3 Question 3: Comparison of Parzen Win-

dow, K-Nearest Neighbor and Nearest Neigh-

bor techniques.

The objective here is to design three classifiers using 1) the Parzen Window,
2) The K-nearest neighbor and 3) the Nearest Neighbor. The dataset used
above (i.e. comparison of Neural Network and Support Vector Machine) is
also used in this problem. Although for better visualization of the parameter
estimation via Parzen window, the data has been projected to 1-D by using
the Fisher discriminant vector discussed in problem 1. The original data and
the projected 1-D data are shown in Fig.13. First, we design a Parzen win-
dow density estimation method using a trained set which was also obtained
from projection of an original (2-D) training set. The estimated densities of
the two classes are then used for classification. The classification here hinges
on the accuracy of the density estimation which in turns depends on the size
of the training set and the scaling parameter h. Since the training set is fixed
here we look only look at here the effect of h on the density estimation. We
list below many plots (i.e. 14,15,16,17,18, ,19,20,21,) of the density estima-
tion for the two classes along with the associated misclassification error rate
for different value of h, the scaling parameter in the Parzen window method.
There is no consistency in the density estimation for the various values of
h although for the values of h=0.6,0.7,0.8, the density estimation and the
corresponding probability of error seems to converge. This density they con-
verges is the correct here (we know that since was the data was synthesized).
In practice however we do not have this information and the above dilemma
persists. If large training data is not available, the Parzen window does not
seems to be a stable method. For the purpose of comparing the Parzen win-
dow technique to the k-Nearest Neighbor(kNN) and Nearest Neighbor(NN)
we choose h=0.8 and then the correct misclassification error rate is 0.06. To
compare the above method to the k-NN and the NN we utilize the code from
www.mathworks.com/matlabcentral/files/15562/kNearestNeighbors. When the
the code is applied to the same training set and test set, we have a misclassifi-
cation rate of 0.03 for the k-NN. For the NN case we have a misclassification
rate of 0.05. Therefore for our data set the k-NN and the NN algorithm
performed better than the Parzen window method.

18

−5 0 5 10
0

5

10

15 Original Observations: N = 150, P(ω
1
) = 0.5, P(ω

2
) =0.5

1st Component of the feature vector

2n
d
 C

o
m

p
o

n
en

t
o

f
th

e
fe

at
u

re
 v

ec
to

r

Class 1
Class 2

−4 −2 0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

New 1−D observation after a projection using Fisher Linear Discriminant

Figure 13: Original observed data and projected 1-D observed data

−6 −4 −2 0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Parzen Window Classification −−−− h =0.01−−−−Error Rate = 0.092954

Class1
Class2

Figure 14: Parzen window method with h=0.01

19

−6 −4 −2 0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Parzen Window Classification −−−− h =0.04−−−−Error Rate = 0.092954

Class1
Class2

Figure 15: Parzen window method with h=0.04

−6 −4 −2 0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Parzen Window Classification −−−− h =0.1−−−−Error Rate = 0.066638

Class1
Class2

Figure 16: Parzen window method with h=0.1

20

−6 −4 −2 0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Parzen Window Classification −−−− h =0.2−−−−Error Rate = 0.066638

Class1
Class2

Figure 17: Parzen window method with h=0.2

−6 −4 −2 0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Parzen Window Classification −−−− h =0.3−−−−Error Rate = 0.090832

Class1
Class2

Figure 18: Parzen window method with h=0.3

21

−6 −4 −2 0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Parzen Window Classification −−−− h =0.6−−−−Error Rate = 0.067242

Class1
Class2

Figure 19: Parzen window method with h=0.6

−6 −4 −2 0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Parzen Window Classification −−−− h =0.7−−−−Error Rate = 0.067242

Class1
Class2

Figure 20: Parzen window method with h=0.7

22

−6 −4 −2 0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Parzen Window Classification −−−− h =0.8−−−−Error Rate = 0.067242

Class1
Class2

Figure 21: Parzen window method with h=0.8

3.1 Code for Problem 3.

Code for Parzen Window Classification

%DATA SET FOR PARZEN WINDOW ESTIMATION

%Training data

y1_t = r1_t*w_o;

y2_t = r2_t*w_o;

% Test dataset

y1 = r1_o*w_o;

y2 = r2_o*w_o;

%Window width

h=0.8;

%Estimating density of class 1;

xh = [-4:h:10];

z1=hist(y1_t,xh);

T1 = conv(z1,parzenwin(50));

x1 = [1:1:length(T1)];

x1 = ((x1/max(x1))*(max(xh)-min(xh)))+min(xh);

%z2 = hist(y2_t,length(y2_t));

T1 = (T1/sum(T1))*inv(h);

plot(x1,T1,’o-’)

23

hold all;

%Estimating density of class 2;

xh = [-5:h:12];

z2=hist(y2_t,xh);

T2 = conv(z2,parzenwin(50));

x2 = [1:1:length(T2)];

x2 = ((x2/max(x2))*(max(xh)-min(xh)))+min(xh);

%z2 = hist(y2_t,length(y2_t));

T2 = (T2/sum(T2))*inv(h);

plot(x2,T2,’o-’)

legend(’Class1’,’Class2’)

title([’Parzen Window Classification ---- h =’,num2str(h),’----Error Rate = ’ num2str(P_error)]);

%Class2 classification error;

T1new1 = spline(x1,T1,y1);

T1new2 = spline(x2,T2,y1);

P1_error = (sum(T1new1 < T1new2))/length(T1new2)

%Class2 classification error;

T2new1 = spline(x1,T1,y2);

T2new2 = spline(x2,T2,y2);

P2_error = (sum(T2new1 > T2new2))/length(T2new2)

P_error = mean([P1_error P2_error])

24

