
1

Purdue University
School of Electrical and Computer Engineering
Graduate School

Name
Collaborators
ECE 662: Homework #2
Prof. Boutin
April 15, 2008

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

2

1. Parametric method evaluation

1.1. For this part of the homework we executed the following steps:

1.1.1. Generate synthetic Gaussian data
1.1.2. 1,000 training samples, 𝑁𝑇
1.1.3. 9,000 test samples, 𝑁
1.1.4. We generated two different classes, 𝑤1 and 𝑤2

1.2. Computed the sample mean for both classes, 𝜇1 and 𝜇2

𝜇𝑖 =
1

𝑁𝑇
 𝑥𝑥𝜖𝑤 𝑖

, where 𝑖 = 1,2 and x are the training samples

1.2.1. Computed the with-in class scatter matrix 𝑆𝑤

𝑆𝑖 = (𝑥−𝜇𝑖)(𝑥−𝜇𝑖)
𝑡

𝑥𝜖𝑤 𝑖

𝑆𝑤 = 𝑆1 + 𝑆2

1.2.2. Computed the projection vectors, 𝜈1 and 𝜈2

𝜈1 = 𝑆𝑤
−1 ∗ (𝜇1 − 𝜇2)

𝜈2 = 𝜇1 − 𝜇2

1.2.3. Projected the training samples using 𝜈1 and 𝜈2

𝑦𝑖 = 𝜈1
𝑡 ∗ 𝑤𝑖

 𝑧𝑖 = 𝜈2
𝑡 ∗ 𝑤𝑖

1.2.4. Computed the histogram of the projected data

The histogram gives the distribution of the projected data. We used this
distribution to compute the cut-off classification threshold.

1.2.5. Computed the cut-off threshold

First, We computed the difference of the histograms for each projected
samples; 𝑦1 − 𝑦2 and 𝑧1 − 𝑧2. Then, we used changes in sign to determine
where to place the cut-off threshold. We assumed a maximum of two
changes in sign and at least one change in sign. With the computed
threshold, we obtain a range of values, in which the samples that inside that
range will be classified in class 𝑤1, otherwise the samples will be classified in
class 𝑤2.

1.2.6. Classified the test samples and computed the error rate

As explained before, we have 9,000 test samples for each class. We classified the
samples and verified which samples were misclassified.

𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒𝑤 𝑖 =
𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑁

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

3

We computed the error rate for each class, using two different classifiers. For
classifier 𝐶𝑆𝑤we compute the with-in class scatter matrix 𝑆𝑤 as shown in section

1.2.1. The other classifier is 𝐶𝐼; for this classifier we set 𝑆𝑤 = 𝐼. When we talk about
𝑆𝑤 ≠ 𝐼, we are saying that 𝑆𝑤 where computed as shown in section 1.2.1. We
repeated steps 1.1.1 to 1.2.6 for 8 different data sets,

1.3. Results

At each data set subsection we give a brief analysis of the results, and then at the
end of the results section we discuss the error rates and compare all experiments.

1.3.1. Data set #1

Figure 1

Figure 2

Figure 3

Figure 4

The first data set was used to show the behavior of the parametric method with
highly correlated data. You can observe, see Figure 1 and Figure 2, that class 1 is
really dense in the mean. On the other hand class 2 has a higher variance. In this

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

4

case, we can discriminate in the data using two thresholds, see Figure 4. However,
you can observe in Figure 3 that the projection did not result in a separation of the
classes. Moreover, there were no significant difference between the projections
lines for 𝐶𝑆𝑤 and 𝐶𝐼, see Figure 1. We just concluded that the parametric method is

not good for very highly correlated data.

1.3.2. Data set #2

Figure 5

Figure 6

Figure 7

Figure 8

For this data set we decreased the correlation between classes, see Figure 5 and Figure
6. Now you can see well separated projected samples in Figure 7. However, there were
no difference between the projections lines for 𝐶𝑆𝑤 and 𝐶𝐼, see Figure 5.

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

5

1.3.3. Data set #3

Figure 9

Figure 10

Figure 11

Figure 12

For data set #3 we just rotated the data 45 degrees. The correlation was similar to that
in data set #2. We can observe that there is no significant difference between the
projections lines for 𝐶𝑆𝑤 and 𝐶𝐼, see Figure 9.

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

6

1.3.4. Data set #4

Figure 13

Figure 14

Figure 15

Figure 16

For data set #4, we rotated the data -45 degrees. The statistical properties of the data
were similar to the previous two data sets. The outcome of the experiment was very
similar to our previous results. The separation of the projected data was acceptable and
there is no significant difference between the projections lines for 𝐶𝑆𝑤 and 𝐶𝐼, see Figure

13.

For the next data sets we used our intuition to try different data sets that should create
a difference between the projections lines for 𝐶𝑆𝑤 and 𝐶𝐼.

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

7

1.3.5. Data set #5

Figure 17

Figure 18

Figure 19

Figure 20

From the computed data we know that the between-class scatter matrix 𝑆𝐵 measures
the distance between the classes’ mean. On the other hand, the within-class scatter
matrix 𝑆𝑤 takes in consideration the distribution of the data. Therefore, when we set
𝑆𝑤 = 𝐼 we are only taking in account the distance between the means and when we
compute the projection axis for 𝑆𝑤 ≠ 𝐼 we take in consideration the distance of the
means and the variance of the data.

Let define two variables which are different distances between the classes. 𝜉1 is the
distance between classes 𝑤1 and 𝑤2 parallel to the projection axis when 𝑆𝑤 ≠ 𝐼. 𝜉2 is
the distance between classes means 𝜇1 and 𝜇2, which are parallel to the projection axis
when 𝑆𝑤 = 𝐼. Consequently, we expected that a data set with 𝜉1 ≪ 𝜉2 should result in

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

8

different projection vectors. We can create such data, if the distribution of the samples
has a high variance orthogonal to the projection axis when 𝑆𝑤 ≠ 𝐼, see Figure 17. As
expected, we got a significant difference between the projection vectors. As Figure 19
shows, the optimal projection vector provides well separated classes. Figure 18 shows
the projected data, and Figure 19 and Figure 20 sow the histogram of the projected
data. We can observe that easily we can select a threshold that should effectively
differentiate between classes.

1.3.6. Data set #6

Figure 21

Figure 22

Figure 23

Figure 24

For this data set we changed the distribution of the data. The most significant changes
are the increment in the correlation between the classes and the difference between
the classes variance. As with data set #5, we got a significant difference between the
projected vectors. However, because the data were more correlated we get some

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

9

overlapping of samples in the projection. Nevertheless, the results, are better than we
set up 𝑆𝑤 = 𝐼.

1.3.7. Data set #7

Figure 25

Figure 26

1.3.8. Data set #8

Figure 27

Figure 28

For data sets #7 and #8 we went to higher feature dimensions in order to see how the
system will behave. Our results were very similar to our previous experiments.

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

10

1.3.9. Error rate results

Figure 29

1.4. Analysis and discussion

As many other pattern recognition strategies, the results of the parametric method if
𝑆𝑤 ≠ 𝐼 or 𝑆𝑤 = 𝐼 depend on the properties of the data we are categorizing. From our
experiments results, the error rates help us to understand the effects of making 𝑆𝑤 = 𝐼.
As explained in section 1.3.5, the projections vector will be different when 𝜉1 ≪ 𝜉2. As
we can see in Figure 29, for data sets 1, 2, 3, 4, 6, and 7 𝜉1 ≈ 𝜉2. Therefore, the error
rates are the same no matter what projection vector we use. However, when we made
𝜉1 ≪ 𝜉2, in data sets 5 and 6 we got different results for each projection vector. In
addition we can see that we got better results for the classifier that has 𝑆𝑤 ≠ 𝐼.

Our conclusion is that a parametric method with a classifier 𝐶𝐼 will be less effective than
a parametric method with classifier 𝐶𝑆𝑤 , if the vector that connects the data means is

not parallel to the optimal projection vector. We can pre-process the data to decide
which classifier to use. However, a classifier with 𝑆𝑤 ≠ 𝐼 is the safe way to go.

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

11

1.5. Matlab’s code

1.5.1. Code for classes with a feature size of two
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ECE662 - Prof. Boutin %
% Homework #2 - Problem 1 %
% March 23, 2008 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%clear all variables and close all windows
clear all
close all

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Run properties
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%data filename
filename = 'DataSet';
fnum = 1;
%dimensions
d = 2;
%training samples
Nt = 10^3;
%number of bins for histograms
bins = 30;
%number of data sets
ND = 6;
%variable to store error rate of system for each data set
error = zeros(4, ND);

%loop for each data set
for dataCount = 1:ND

fnum = dataCount;

display '%%'
sprintf('%s%s%d%s', 'Running ', filename, fnum, '.mat')

%%%
%% Load data
%%
data = load(sprintf('%s%s%d%s', 'data/', filename, fnum, '.mat'));
class1 = data.Class1(:, 1:Nt);
class2 = data.Class2(:, 1:Nt);
mu = data.m1 - data.m2;
Sw = data.Sw;

%%%
%% Project samples to straigth line for vector 1 with Sw

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

12

w1 = inv(Sw)*mu;
if(mu == 0)
 w1 = [0.001; 0.001];
end
w1 = w1/norm(w1);
y1 = w1'*class1;
y2 = w1'*class2;
minY = min([y1, y2]);
maxY = max([y1, y2]);
stepY = (maxY-minY)/(bins);
angleY = atan(w1(2)/w1(1));
wx1 = cos(angleY).*[min(y1, y2); max(y1, y2)];
wy1 = sin(angleY).*[min(y1, y2); max(y1, y2)];
%histograms for Sw
x1 = minY:stepY:maxY;
ny1 = hist(y1, x1);
ny2 = hist(y2, x1);
%plot histogram for projected data with Sw
f = figure;
hold on
bar(x1, ny1, 'r');
bar(x1, ny2, 'b');
legend('Class 1', 'Class 2');
xlabel('Event');
ylabel('Number of occurrences');
title(sprintf('%s%s %d', 'Histogram of projected data for ', filename, fnum), 'FontSize', 16);
hold off
saveas(f, sprintf('%s%s%d%s', 'img/', 'histo_', fnum, '.jpg'), 'jpg');
close(f);
%plot histogram difference for projected data with Sw
f=figure;
hold on
bar(x1, ny1-ny2, 'r');
legend('Class 1 - Class 2');
xlabel('Event');
ylabel('Number of occurrences in Class 1 - Class 2');
title(sprintf('%s%s %d', 'Difference histogram of projected data for ', filename, fnum), 'FontSize', 16);
hold off
saveas(f, sprintf('%s%s%d%s', 'img/', 'histoDiff_', fnum, '.jpg'), 'jpg');
close(f);

%%
%%%%%%%%%%
%% Projections with Sw = I
%%
%%%%%%%%%%
w2 = mu/norm(mu);
if(mu == 0)
 w2 = [0.001; 0.001];
end
z1 = w2'*class1;
z2 = w2'*class2;

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

13

minZ = min([z1, z2]);
maxZ = max([z1, z2]);
stepZ = (maxZ-minZ)/(bins);
angleZ = atan(w2(2)/w2(1));
wx2 = cos(angleZ).*[min(z1, z2); max(z1, z2)];
wy2 = sin(angleZ).*[min(z1, z2); max(z1, z2)];
%histograms for Sw = I
x2 = minZ:stepZ:maxZ;
nz1 = hist(z1, x2);
nz2 = hist(z2, x2);
%plot histogram for projected data with Sw = I
figure
hold on
bar(x2, nz1, 'r');
bar(x2, nz2, 'b');
legend('Class 1', 'Class 2');
xlabel('Event');
ylabel('Number of occurrences');
title(sprintf('%s%s %d', 'Histogram of projected data (S_w = I) for ',...
 filename, fnum), 'FontSize', 16);
hold off
saveas(f, sprintf('%s%s%d%s', 'img/', 'HistoProjSwI_', fnum, '.jpg'), 'jpg');
close(f);

%%
%
%% Plot 2D data
%%
%
f = figure('Position', [1000, 300, 600, 600]);
hold on
plot(class1(1, :), class1(2, :), '+r');
plot(class2(1, :), class2(2, :), 'ob');
plot(wx1, wy1, '-k', 'LineWidth', 3);
plot(wx2, wy2, '--m', 'LineWidth', 2);
legend('Class 1', 'Class 2', 'Vector with S_w', 'Vector with S_w = I');
xlabel('x_1', 'FontSize', 14);
ylabel('x_2', 'FontSize', 14);
title(sprintf('%s%s %d', '2-D Data Plot of ', filename, fnum), ...
 'FontSize', 16);
xLimit = xlim;
yLimit = ylim;
grid on;
hold off
saveas(f, sprintf('%s%s%d%s', 'img/', 'data_', fnum, '.jpg'), 'jpg');
close(f);
%plot projected samples
f=figure('Position', [1000, 300, 600, 600]);
hold on
plot(cos(angleY).*y1, sin(angleY).*y1, '+r');
plot(cos(angleY).*y2, sin(angleY).*y2, 'ob');
xlabel('x_1', 'FontSize', 14);

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

14

ylabel('x_2', 'FontSize', 14);
legend('Class 1', 'Class 2');
title(sprintf('%s%s %d', 'Projected Data Plot of ', filename, fnum), 'FontSize', 16);
xlim(xLimit);
ylim(yLimit);
grid on;
hold off;
saveas(f, sprintf('%s%s%d%s', 'img/', 'ProjData_', fnum, '.jpg'), 'jpg');
close(f);

%%
%%%%%%%%%%%%%
%% Compute thresholds for y
%%
%%%%%%%%%%%%%
%compute discrimination threshold
len = length(ny1);
th = len.*ones(1, 2);
count = 0;
%check polarity of first bin in difference histogram
polar = 0;
if((ny1(1) - ny2(1)) <= 0)
 polar = 0;
else
 polar = 1;
 th(1) = 1;
 count = 1;
end
%loop to get thresholds
for i=2:len
 if(((ny1(i) - ny2(i)) < 0) && (polar == 1))
 count = count + 1;
 if (count > 2)
 display 'More than two thresholds'
 break;
 end
 th(count) = i - 1;
 polar = 0;
 elseif(((ny1(i) - ny2(i)) > 0) && (polar == 0))
 count = count + 1;
 if (count > 2)
 display 'More than two thresholds'
 break;
 end
 th(count) = i;
 polar = 1;
 end
end

%compute error rate of classification algorithm
expC1 = w1'*data.Class1(:, Nt+1:end);
expC2 = w1'*data.Class2(:, Nt+1:end);

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

15

len = length(expC1);
errorY1 = 0;
errorY2 = 0;
LB = x1(th(1)) - (x1(2)-x1(1))/2;
UB = x1(th(2)) + (x1(2)-x1(1))/2;
for i=1:len
 if(not(((LB <= expC1(i)) && (expC1(i) <= UB))))
 errorY1 = errorY1 + 1;
 end
 if((LB <= expC2(i)) && (expC2(i) <= UB))
 errorY2 = errorY2 + 1;
 end
end

%%
%% Threshold for projected data with Sw = I %%
%%
%compute discrimination threshold
len = length(nz1);
th = len.*ones(1, 2);
count = 0;
%check polarity of first bin in difference histogram
polar = 0;
if((nz1(1) - nz2(1)) <= 0)
 polar = 0;
else
 polar = 1;
 th(1) = 1;
 count = 1;
end
%loop to get thresholds
for i=2:len
 if(((nz1(i) - nz2(i)) < 0) && (polar == 1))
 count = count + 1;
 if (count > 2)
 display 'More than two thresholds'
 break;
 end
 th(count) = i - 1;
 polar = 0;
 elseif(((nz1(i) - nz2(i)) > 0) && (polar == 0))
 count = count + 1;
 if (count > 2)
 display 'More than two thresholds'
 break;
 end
 th(count) = i;
 polar = 1;
 end
end

%compute error rate of classification algorithm

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

16

expC1 = w2'*data.Class1(1:d, Nt+1:end);
expC2 = w2'*data.Class2(1:d, Nt+1:end);
len = length(expC1);
errorZ1 = 0;
errorZ2 = 0;
LB = x2(th(1)) - (x2(2)-x2(1))/2;
UB = x2(th(2)) + (x2(2)-x2(1))/2;
for i=1:len
 if(not(((LB <= expC1(i)) && (expC1(i) <= UB))))
 errorZ1 = errorZ1 + 1;
 end
 if((LB <= expC2(i)) && (expC2(i) <= UB))
 errorZ2 = errorZ2 + 1;
 end
end

%compute error rate
error(:, dataCount) = [errorY1;
 errorY2;
 errorZ1;
 errorZ2]/len;

end

%plot error rate of each data set
f=figure;
hold on
bar(1:ND, error')
legend('Class 1', 'Class 2', 'Class 1 with S_w = I', 'Class 2 with S_w = I');
title('Classification error rate of the system for each data set (9,000 samples)');
xlabel('Data sets');
ylabel('Error rate');
hold off;
saveas(f, sprintf('%s%s%s', 'img/', 'error', '.jpg'), 'jpg');

1.1.1. For the classes with features vector greater than two we used a similar code.
The only thing we removed was the plot for 2-D data. We found that was a
waste of space and paper to add the code here. If you need this code, let me
know.

1.1.2. Data generator code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ECE 662 Homework #1 %
% Generates Normal Data %
% Professor Boutin %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%clear all data
clear all;

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

17

close all;

%Procedure to generate random data

%data size, number of samples
N = 10^4;
%size of feature vector
d = 2;

%%
%Generate data
%%
%mean of each feature
mu1 = zeros(d, 1); mu1(1) = 0; mu1(2) = 0;
mu2 = -mu1; mu2(1) = -30; mu2(2) = 0;
%variance of each mean
sd1 = 1 * ones(1, d); sd1(1) = 100; sd1(2) = 200;
sd2 = 1 * sd1; sd2(1) = 25; sd2(2) = 150;
%generate data
DataGen(N, d, mu1, mu2, sd1, sd2, 'DataSet6', -30*pi/180, -30*pi/180);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ECE 662 Homework #1 %
% Generates Normal Data %
% Professor Boutin %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%N - number of samples
%d - size of feature vector
%m1 - mean vector
%sd - variance vector
%fileName - data is stored in a file with this name
function DataGen(N, d, m1, m2, sd1, sd2, fileName, z1, z2)

%reserve memory for variable
Class1 = zeros(d, N);
Class2 = zeros(d, N);
%generate normalize data
for i = 1:d
 for j=1:N
 Class1(i, j) = m1(i) + sqrt(sd1(i))*randn(1);
 Class2(i, j) = m2(i) + sqrt(sd2(i))*randn(1);
 end
end

%Rotate classes data
if((m2(1) ~= 0) || (m2(2) ~= 0))
 Class2 = Class2 - m2*ones(1,N);
end
Class1 = [cos(z1), -sin(z1); sin(z1), cos(z1)]*Class1;

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

18

Class2 = [cos(z2), -sin(z2); sin(z2), cos(z2)]*Class2;
if((m2(1) ~= 0) || (m2(2) ~= 0))
 Class2 = Class2 + m2*ones(1,N);
end

%Compute scatter matrices
S1 =(Class1-m1*ones(1,N))*(Class1-m1*ones(1,N))';
S2 =(Class2-m2*ones(1,N))*(Class2-m2*ones(1,N))';
Sw = S1 + S2;
Sb = (m1 - m2)*(m1- m2)';

%save
save(sprintf('%s%s%s', 'data/', fileName, '.mat'), 'Class1', 'Class2', 'm1', 'm2', 'S1', 'S2', 'Sw', 'Sb');
sprintf('%s%s%s', 'Data ', fileName, ' generated.')

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

19

2. Neural networks and Support Vector Machines

2.1. Experiment description

2.1.1. We used 40 black and white image samples shown in Figure 45. The image
samples consisted of the letter A and R typed in different computer typefaces.
With the exception of two four image samples that were handwritten.

2.1.2. We repeated each experiment for different training set sizes (6, 10, and 14
samples for each letter). The remaining samples were used for testing.

2.2. Procedure

2.2.1. The first step is to pre-process the input. Each image was cropped as much as
possible. Then, we resized all images to the same width and height (50 x 50
pixels).

2.2.2. After the pre-process, we used the raw image input for one of the Neural
Network experiments. For the other experiments we extracted a set of features
explained in the section below.

2.3. Feature extraction

f1

f5

. . . F6 F10

.

.

.

f11

f15

. . . f16 f20

.

.

.

Figure 30

f21

f22

f23

Figure 31

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

20

2.3.1. Figure 30 and Figure 31 show how we computed the features. For the first
ten features we computed histogram of the number of pixels with a zero (black
pixels) for each row and columns. Then, we partition the each histogram in five
equally spaced regions and each feature contained the area under the curve of
the histogram for its respective region. For features 11 to 20, we rotated the
image 45 degrees counter-clockwise, and then followed the same procedure
discussed above. The last three features, Figure 31, are the number of pixels
with zero inside each frame respectively.

𝑓21 = 𝑏𝑎𝑙𝑐𝑘 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑏𝑙𝑢𝑒 𝑠𝑞𝑢𝑎𝑟𝑒
𝑓22 = 𝑏𝑙𝑎𝑐𝑘 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑦𝑒𝑙𝑙𝑜𝑤 𝑠𝑞𝑢𝑎𝑟𝑒 − 𝑓21
𝑓23 = 𝑏𝑙𝑎𝑐𝑘 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑔𝑟𝑒𝑒𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 − 𝑓22 − 𝑓21

2.4. The Neural Networks experiments

2.4.1. For the NN experiments we made three different systems. One received the
image raw data as input (each pixel in the image is an input) and with a five
digit binary output. The second experiment was using our 23 features set and
five digits binary output. The third experiment used the features, but the
output was a single integer. All systems had two hidden layers. We used
Matlab’s NN algorithms to create and train the networks.

2.5. Support vector machine

2.5.1. For the SVM experiments we used Matlab’s SVM functions to create and
train the systems. The SVM were based on three different kernel functions—
liner, quadratic, polynomial, and Gaussian Radial Basis.

2.6. Results and analysis

2.6.1. NN training examples

Figure 32

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

21

Figure 33

Figure 34

Notice that the number of training samples 𝑁𝑡 is 12, 20, and 28. This is because is the sum
of A and R letters and we have 6, 10, and 14 training samples for each letter. From these
results I would like to highlight the similarities between Figure 33 and Figure 34. With NN
sometimes adding more training samples is not necessary. It can lead to overfitting the
network. For these systems, we get to our goal of 0.001 error rate in less than 60
interations.

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

22

Figure 35

Figure 36

Figure 35 and Figure 36 are two examples of the training of two different NN systems. For
the system in Figure 35, we used the 23 extracted features as the network input and the out
was 5 digits binary output. The system never achieved our performance goal of 0.001. On
the other hand, when we used the features and the output was a single integer (1 or 2), the
system reached its goal in less than 6 iterations.

2.6.2. Error rate

Figure 37

Figure 38

As you can see in Figure 37 and Figure 38, the systems error rates varies by the size of the
training sample. Particularly interesting was to see that for a NN with the image raw input
the best performance was obtained when we have the fewer training samples. The
increment of training data led to the over fitting of the NN. Overall we observed that too
many training samples (over 14 samples) led to over fitting. However, we decided to show
the error rate from two different runs to point out the effect of the selected training data.
Our algorithms selected the training samples randomly. We just tell the system how many

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

23

samples to choose. You can see a difference in performance in the figures above. Therefore,
we can conclude that we need to analyze the data used for training. Selecting outliners for
training can lead to misclassifications. Finally when designing an NN or SVM we need to
study our data to determine what training samples are good and how many of them we are
going to use.

When comparing NN with SVM we can say that we observe more consistent results in the
side of SVM. NN systems are very sensitive to input noise. On the other hand, for SVM we
need to preprocess all data in order to extract features. Although we did the same
preprocessing of the data for NN, SVM sees to handle features better than NN. However,
my intuition led me to think that this is true given the characteristics of my problem—
identifying two letters. Therefore, NN could outperform SVM in other applications.

We would like to clarify that there is a simple concept that applies to these experiments;
trash in, trash out. We tried to select meaningful features from the characters to detect.
Given that we were only dealing with two classes of characters I found enough the 23
features mentioned above. However, we need to admit that a comprehensive study of this
problem should be done in order to decide which features are good for classification. A new
set of features may lead to better and more consistent results.

2.7. Matlab’s code
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% ECE 662: Homework #2 %%
%% Problem 2 %%
%% Prof. Boutin %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%clear all data and variables
clear all
%close all windows
close all

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Load data %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%load data
letters = ['A', 'R']; %letter to categorize
numC = size(letters, 2); %number of letters or classes to categorize
numSL = 20; %Number of training samples per letter
letBinSize = 4; %binary size of letters
%Next we load each letter image. All images
%should have the same dimensions
[m, n] = size(imread('char/A1.tif', 'tif'));
%create array that is going to contain training data
nnData = zeros(50*50, numSL * numC);
svmData = zeros(23, numSL * numC);
outDataB = zeros(letBinSize, numSL * numC);

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

24

outDataL = zeros(1, numSL * numC);

%get training data
for i = 1 : numC %loops for each letter
 for j = 1 : numSL %loops for each letter sample

 %load image
 temp = imread(sprintf('%s%s%d%s', 'char/', letters(i),...
 j, '.tif'), 'tif');

 %give label
 outDataB(:, (i-1) * numSL + j) = de2bi(i, letBinSize);
 outDataL(:, (i-1) * numSL + j) = i;

 %preprocess image for NN
 nnData(:, (i-1) * numSL + j) = reshape((1-preprocess(temp)), 1, []);
 %preprocess image and get features for NN and SVM
 svmData(:, (i-1) * numSL + j) = getFeatures(preprocess(temp));
 end
end

%loop to increment training set size
error = zeros(3, 7);
count = 1;
for i = 0.3:0.2:0.7

%%%
%% separate data for training, evaluation, and testing
%%%
index = 1:numSL * numC;
[trainD1, evalD1, testD1] = dividevec(index(1:20), index(1:20), 0, 1-i);
[trainD2, evalD2, testD2] = dividevec(index(21:40), index(21:40), 0, 1-i);
%merge data for raw NN approoach
trainSetNN = [nnData(:, trainD1.P) nnData(:, trainD2.P)];
outTrainNN = [outDataB(:, trainD1.P) outDataB(:, trainD2.P)];
testSetNN = [nnData(:, testD1.P) nnData(:, testD2.P)];
%outTestNN = [outDataB(:, testD1.P) outDataB(:, testD2.P)];
%merge data for feature based NN and SVM approach
trainSetSVM = [svmData(:, trainD1.P) svmData(:, trainD2.P)];
outTrainSVM = [outDataL(:, trainD1.P) outDataL(:, trainD2.P)];
testSetSVM = [svmData(:, testD1.P) svmData(:, testD2.P)];
outTestSVM = [outDataL(:, testD1.P) outDataL(:, testD2.P)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Train NN systems
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%create NN network with raw image input and binary output
numInternalNeurons = [20, size(outTrainNN, 1)];
netB = newff(minmax(trainSetNN), numInternalNeurons, ...
 {'logsig', 'logsig'}, 'traingdx');

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

25

%train network
netB.LW{2,1} = netB.LW{2,1}*0.01;
netB.b{2} = netB.b{2}*0.01;
netB.performFcn = 'sse';
netB.trainParam.goal = 0.0001;
netB.trainParam.show = 20;
netB.trainParam.epochs = 5000;
netB.trainParam.mc = 0.95;
[netB,trB]=train(netB, trainSetNN, outTrainNN);
%plot and save training performance
f = figure;
hold on
plot(trB.epoch, trB.perf, '-r', 'LineWidth', 2)
title(sprintf('%s%d%s', ...
 'Neural Network Raw Image Input and Binary Output (N_t = ', ...
 size(trainSetNN, 2), ')'), 'FontSize', 14);
xlabel('Iterations');
ylabel('Performance');
legend('Performance of system at each training iteration');
hold on
%saveas(f, sprintf('%s%d%s', 'img\NNRaw', ...
% size(trainSetNN, 2), '.jpg'), 'jpg');
close(f);

%create NN network with features as inputs and single integer output
numInternalNeurons = [23, 1];
netS = newff(minmax(trainSetSVM), numInternalNeurons, ...
 {'logsig', 'purelin'}, 'trainlm');
%train network
netS.performFcn = 'sse';
netS.trainParam.goal = 0.0001;
netS.trainParam.show = 20;
netS.trainParam.epochs = 5000;
[netS,trS]=train(netS, trainSetSVM, outTrainSVM);
%plot and save training performance
f = figure;
hold on
plot(trS.epoch, trS.perf, '-g', 'LineWidth', 2)
title(sprintf('%s%d%s', ...
 'Neural Network Features Input and Integer Output (N_t = ', ...
 size(trainSetNN, 2), ')'), 'FontSize', 14);
xlabel('Iterations');
ylabel('Performance');
legend('Performance of system at each training iteration');
hold on
%saveas(f, sprintf('%s%d%s', 'img\NNFS', ...
% size(trainSetNN, 2), '.jpg'), 'jpg');
close(f);

%create NN network with features as inputs and binary output
numInternalNeurons = [23, size(outTrainNN, 1)];
netFB = newff(minmax(trainSetSVM), numInternalNeurons, ...

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

26

 {'logsig', 'logsig'}, 'trainlm');
%train network
netFB.performFcn = 'sse';
netFB.trainParam.goal = 0.0001;
netFB.trainParam.show = 20;
netFB.trainParam.epochs = 5000;
[netFB,trFB]=train(netFB, trainSetSVM, outTrainNN);
%plot and save training performance
f = figure;
hold on
plot(trFB.epoch, trFB.perf, '-b', 'LineWidth', 2)
title(sprintf('%s%d%s', ...
 'Neural Network Features Input and Binary Output (N_t = ', ...
 size(trainSetNN, 2), ')'), 'FontSize', 14);
xlabel('Iterations');
ylabel('Performance');
legend('Performance of system at each training iteration');
hold on
%saveas(f, sprintf('%s%d%s', 'img\NNFB', ...
% size(trainSetNN, 2), '.jpg'), 'jpg');
close(f);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Test NN systems
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%size of test output vector
sVO = size(outTestSVM, 2);

%create NN network with raw image input and binary output
outSim = sim(netB, testSetNN);
outSim = bi2de(uint32(round(outSim))');
res = outSim == outTestSVM';
error(count, 1) = 1 - sum(res) / sVO;

%create NN network with features as inputs and single integer output
outSim = sim(netS, testSetSVM);
outSim = uint32(round(outSim))';
res = outSim == outTestSVM';
error(count, 2) = 1 - sum(res) / sVO;

%create NN network with features as inputs and binary output
outSim = sim(netFB, testSetSVM);
outSim = bi2de(uint32(round(outSim))');
res = outSim == outTestSVM';
error(count, 3) = 1 - sum(res) / sVO;

%%
%% Train SVM systems
%%

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

27

%linear kernel
svm1 = svmtrain(trainSetSVM', outTrainSVM', 'Kernel_Function', 'linear');

%quadratic kernel
svm2 = svmtrain(trainSetSVM', outTrainSVM', 'Kernel_Function', 'quadratic');

%polynomial kernel
svm3 = svmtrain(trainSetSVM', outTrainSVM', 'Kernel_Function', 'polynomial');

%Gaussian Radial Basis Function kernel (rbf)
svm4 = svmtrain(trainSetSVM', outTrainSVM', 'Kernel_Function', 'rbf');

%%
%% Test SVM systems
%%

%linear kernel
outSim = svmclassify(svm1, testSetSVM');
res = outSim == outTestSVM';
error(count, 4) = 1 - sum(res) / sVO;

%quadratic kernel
outSim = svmclassify(svm2, testSetSVM');
res = outSim == outTestSVM';
error(count, 5) = 1 - sum(res) / sVO;

%polynomial kernel
outSim = svmclassify(svm3, testSetSVM');
res = outSim == outTestSVM';
error(count, 6) = 1 - sum(res) / sVO;

%Gaussian Radial Basis Function kernel (rbf)
outSim = svmclassify(svm4, testSetSVM');
res = outSim == outTestSVM';
error(count, 7) = 1 - sum(res) / sVO;

count = count + 1;

end

%%%
%% Plot error
%%%
f = figure('Position', [200, 200, 800, 400]);
hold on
bar(0.3:0.2:0.7, error)
xlabel('Classification systems error as increment in training set size');
ylabel('Error rate');
title('Error Rate For Different Training Set Sizes', 'FontSize', 14);

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

28

legend('NN Raw/Binary', 'NN Feature/Integer', 'NN Feature/Binary', ...
 'SVM Linear', 'SVM X^2', 'SVM X^3', 'SVM Gaussian', ...
 'Orientation', 'vertical', 'Location', 'NorthEastOutside');
xlim([0.2 0.8]);
ylim([0 1]);
hold off
saveas(f, 'img\errorHisto2.jpg', 'jpg');

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

29

3. Parzen windows, nearest neighborhood, and k- nearest
neighborhood

3.1. Experiment description

3.1.1. For these experiments we used the same data as Section 2
3.1.2. We used Matlab’s principal component analysis (PCA) algorithm to project

the data.

Figure 39

The figure above shows how much the components describe the data. We have that
with the first two components we can describe almost 60% of the data. Below you
can observe how our data was projected. In Figure 40, you can see that each class
has a well defined cluster, with the exception of a few outliners.

3.1.3. We projected the data to a 2-D plane.

Figure 40

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

30

3.1.4. Parzen Windows

For the Parzen Windows we used a square window. We tested different sizes and
showed the results for a window width of 1.5.

3.1.5. K-Nearest Neighbor (K-NN)

We created an algorithm for K-NN, and the set k to one in order to implement
nearest neighbor approach. The distance between samples was Euclidean distance.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (𝑥𝑡𝑟𝑎𝑖𝑛 − 𝑥𝑡𝑒𝑠𝑡)2

3.2. Results and analysis

We got interesting results from our experiments. First, the Parzen Window strategy gave a
noticeable decrease in error rate as we incremented the training set size. We also saw the
same behavior with the K-NN systems, but not as consistent as with the Parzen Window.
Also, we can notice that incrementing the number of closest neighbors in the nearest
neighbor approach increase the error rate. This may be due to our sparse data. You can
notice a separation between the classes, see Figure 40. The problem is that the classes are
really close at the boundary of the clusters. Therefore, as we increase the number of
neighbors the probability of mismatch increases. This means that given our data, a
parametric method, as the one we used in section 1, should be a better strategy to classify
our classes. You can see examples of outliers, when using a Pazen Window in Figure 43 and
Figure 44.

Figure 41

Figure 42

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

31

Figure 43

Figure 44

3.3. Matlab’s code
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% ECE 662: Homework #2 %%
%% Problem 2 %%
%% Prof. Boutin %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%clear all data and variables
clear all
%close all windows
close all

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Load data %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%load data
letters = ['A', 'R']; %letter to categorize
numC = size(letters, 2); %number of letters or classes to categorize
numSL = 20; %Number of training samples per letter
%Next we load each letter image. All images
%should have the same dimensions
[m, n] = size(imread('char/A1.tif', 'tif'));
%create array that is going to contain training data
data = zeros(numSL * numC, 23);
outData = zeros(numSL * numC, 1);

%get training data
for i = 1 : numC %loops for each letter
 for j = 1 : numSL %loops for each letter sample

 %load image
 temp = imread(sprintf('%s%s%d%s', 'char/', letters(i),...

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

32

 j, '.tif'), 'tif');

 %give label
 outData((i-1) * numSL + j, :) = i;

 %preprocess image and get features for NN and SVM
 data((i-1) * numSL + j, :) = getFeatures(preprocess(temp));
 end
end

%%%
%% Project from 23-d to 2-d
%%%

%project data for class A
stdData = std(data);
stdData = data ./ repmat(stdData, size(data, 1), 1);
[pca, pData, vars, t] = princomp(stdData);

%plot a pareto percent of variability explained
percent_explained = 100*vars/sum(vars);
f = figure;
hold on
pareto(percent_explained);
xlabel('Principal Component')
ylabel('Variance Explained (%)')
hold off
%saveas(f, 'img\PCAVar.jpg', 'jpg');
close(f);

%plot projected data
f = figure;
hold on
plot(pData(1:20, 1), pData(1:20, 2), '+r');
plot(pData(21:40, 1), pData(21:40, 2), 'ob');
xlabel('1st Principal Component');
ylabel('2nd Principal Component');
legend('Letter A', 'Letter R')
title('Projected 23-D Feature Space to PCA 2-D Space', 'FontSize', 12)
hold off
%saveas(f, 'img\2DProjection.jpg', 'jpg');
close(f);

%plot projected data
f = figure;
hold on
plot3(pData(1:20, 1), pData(1:20, 2), pData(1:20, 3), '+r');
plot3(pData(21:40, 1), pData(21:40, 2), pData(21:40, 3), 'ob');
xlabel('1st Principal Component');
ylabel('2nd Principal Component');
zlabel('3nd Principal Component');
legend('Letter A', 'Letter R')
title('Projected 23-D Feature Space to PCA 3-D Space', 'FontSize', 12)
grid on
view(3)

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

33

hold off
%saveas(f, 'img\3DProjection.jpg', 'jpg');
close(f);

%loop to increment training set size
error = zeros(3, 5);
count = 1;
for i = 0.3:0.2:0.7

%%%
%% Separate data for training, evaluation, and testing
%%%
index = 1:numSL * numC;
d = 3; %dimensions of projected data
[trainD1, evalD1, testD1] = dividevec(index(1:20), index(1:20), 0, 1-

i);
[trainD2, evalD2, testD2] = dividevec(index(21:40), index(21:40), 0, 1-

i);
%merge data for raw NN approoach
trainSetA = pData(trainD1.P, 1:d);
%outTrainA = outData(trainD1.P, 1:d);
trainSetR = pData(trainD2.P, 1:d);
%outTrainR = outData(trainD2.P, 1:d);
testSet = [pData(testD1.P, 1:d); pData(testD2.P, 1:d)];
outTest = [outData(testD1.P, 1); outData(testD2.P, 1)];
%size of test data
sVO = size(outTest, 1);
%size of train data
nT = size(trainSetA, 1);

%%
%% Parzen Window Classification
%%

%train and test system
simOut = ParzenWindowSQR2(trainSetA, trainSetR, testSet, 3, d);
%Compute error
res = simOut == outTest;
pwE = 1 - sum(res) / sVO;

%%
%% nearest neighbor Classification
%%

%train and test system
simOut = KNN(trainSetA, trainSetR, testSet, 1, d);
%Compute error
res = simOut == outTest;
nnE = 1 - sum(res) / sVO;

%%
%% k-nearest neighbor Classification
%%

%train and test system

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

34

simOut = KNN(trainSetA, trainSetR, testSet, 3, d);
%Compute error
res = simOut == outTest;
knnE(1, 1) = 1 - sum(res) / sVO;

%train and test system
simOut = KNN(trainSetA, trainSetR, testSet, 5, d);
%Compute error
res = simOut == outTest;
knnE(1, 2) = 1 - sum(res) / sVO;

%train and test system
if(nT < 9) simOut = outTest;
else
simOut = KNN(trainSetA, trainSetR, testSet, 9, d);
end
%Compute error
res = simOut == outTest;
knnE(1, 3) = 1 - sum(res) / sVO;

%save error
error(count, :) = [pwE, nnE, knnE];

count = count + 1;

end

%%%
%% Plot error
%%%
f = figure('Position', [200, 200, 800, 400]);
hold on
bar(0.3:0.2:0.7, error)
xlabel('Classification error');
ylabel('Error rate');
title('Error Rate For Different Training Set Size', 'FontSize', 14);
legend('Parzen Window', 'Nearest Neighbor', '3-Nearest Neighbor', ...
 '5-Nearest Neighbor', '9-Nearest Neighbor', 'Location',

'NorthEastOutside');
xlim([0.2 0.8]);
ylim([0 1]);
hold off
%saveas(f, 'img\errorHisto3D1.jpg', 'jpg');

%%%
%% Function
%%%

function simOut = ParzenWindowSQR2(trainSet1, trainSet2, testSet, h, d)

%width of window and volume of window
V = h^d;
%Number of training samples
n = size(trainSet1, 1);

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

35

%Number of test samples
sVO = size(testSet, 1);
%vector for classified test samples
simOut = zeros(sVO, 1);

%compute probability of each test sample and classify
for k = 1 : sVO

 %window coordinates
 lB = testSet(k, :) - (h/2)*ones(1, d);
 uB = testSet(k, :) + (h/2)*ones(1, d);

 %find elements in A and R that their
 %features are inside the range of the window
 %samples from trainSet1 that are in window
 winS = 0;
 for z=1:n
 if(lB <= trainSet1(z, :))
 if(uB >= trainSet1(z, :))
 winS = winS + 1;
 end
 end
 if(lB <= trainSet2(z, :))
 if(uB >= trainSet2(z, :))
 winS = winS - 1;
 end
 end
 end
 %if wins >= 0 the test sampe is an A, R otherwise
 if(winS > 0)
 simOut(k) = 1;
 elseif(winS < 0)
 simOut(k) = 2;
 else
 simOut(k) = 0;
 end
end

%%%
%% Function
%%%

function simOut = KNN(trainSetA, trainSetR, testSet, k, d)

%size of vectors
Ntest = size(testSet, 1);
N = size(trainSetA, 1);

%output vector
simOut = zeros(Ntest, 1);

%distance vectors

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

36

distA = zeros(N, 1);
distR = zeros(N, 1);

%loop to go trough all test samples
for i=1:Ntest
 %loop to go through all train samples
 for j=1:N
 %init
 distA(j) = 0;
 %loop to go through features
 for z=1:d
 %distance from A
 distA(j) = distA(j) + (trainSetA(j, z) - testSet(i, z))^2;
 distR(j) = distR(j) + (trainSetR(j, z) - testSet(i, z))^2;
 end
 distA(j) = sqrt(distA(j));
 distR(j) = sqrt(distR(j));
 end

 %sort distances in acending order
 distA = sort(distA, 'ascend');
 distR = sort(distR, 'ascend');

 %loop to take the closest samples
 counter = 0;
 acount = 1;
 rcount = 1;
 for j=1:k
 if(distA(acount) <= distR(rcount))
 counter = counter + 1;
 acount = acount + 1;
 else
 counter = counter - 1;
 rcount = rcount + 1;
 end
 end
 %decide
 if(counter >= 0)
 simOut(i) = 1;
 else
 simOut(i) = 2;
 end
end

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

37

4. Appendix

4.1. Image letter samples

Figure 45

4.2. Matlab’s code used by most problems

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% ECE 662: Homework #2 %%
%% Problem 2 %%
%% Prof. Boutin %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%I_in is a binary matrix representing a black and white
%image. This function finds the boundary closest to the character.
%Then it cropped and resize the image.
%The function returns a 7x7 matrix with the preprocessed image.
function I = preprocess(I_in)

%find edge of image
I = edge(uint8(I_in));

%fill inside of character
se = strel('square',2);
I = imdilate(I, se);
I= imfill(I,'holes');

%find tigth boundary for character
I = bwlabel(I);
%disp(num); %% If you want to check how many thing were found
I = regionprops(I, 'BoundingBox');
bounds = floor([I.BoundingBox]);

%check bounds are inside image boundaries
if(bounds(1) < 1)
 bounds(1) = 1;
end
if(bounds(2) < 1)
 bounds(2) = 1;

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

38

end
if(bounds(2) + bounds(4) > size(I_in, 1))
 bounds(4) = size(I_in, 1) - bounds(2);
end
if(bounds(1) + bounds(3) > size(I_in, 2))
 bounds(3) = size(I_in, 2) - bounds(1);
end

%crop image
I = I_in(bounds(2):bounds(2) + bounds(4), ...
 bounds(1):bounds(1) + bounds(3));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% ECE 662: Homework #2 %%
%% Problem 2 %%
%% Prof. Boutin %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%This funtions rotates the image to the given
%degree and compute the sum of each column and row
%in the rotated image
function F = getFeatures(img)

%reserve space for feature vector
F = zeros(1, 23);

%preprocess image and compute dist
I0 = 1-img;
%compute horizontal pdf
xpdf = 50-sum(I0, 2);
%compute vertical pdf
ypdf = 50-sum(I0, 1)';

%rotate image
I45 = 1-preprocess(imrotate(img, 45));
%compute horizontal pdf
xpdf45 = 50-sum(I45, 2);
%compute vertical pdf
ypdf45 = 50-sum(I45, 1)';

%get square frame weights
fw = zeros(1, 3);
fw(1) = sum(sum(I0(20:30, 20:30)));
fw(2) = sum(sum(I0(10:40, 10:40))) - fw(1);
fw(3) = sum(sum(I0)) - fw(2) - fw(1);

Name April 15, 2008

ECE 662 Homework #2 Prof. Boutin

39

%set features
for i=1:5
 F(i) = sum(xpdf(10*(i-1)+1:10*(i-1)+10));
 F(i+5) = sum(ypdf(10*(i-1)+1:10*(i-1)+10));
 F(i+10) = sum(xpdf45(10*(i-1)+1:10*(i-1)+10));
 F(i+15) = sum(ypdf45(10*(i-1)+1:10*(i-1)+10));
end
F(21:23) = fw;

