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1. Parametric method evaluation 

1.1. For this part of the homework we executed the following steps: 

1.1.1. Generate synthetic Gaussian data 
1.1.2. 1,000 training samples, 𝑁𝑇  
1.1.3. 9,000 test samples, 𝑁 
1.1.4. We generated two different classes, 𝑤1 and 𝑤2 

1.2. Computed the sample mean for both classes, 𝜇1 and 𝜇2  

𝜇𝑖 =
1

𝑁𝑇
 𝑥𝑥𝜖𝑤 𝑖

,  where  𝑖 = 1,2 and x are the training samples  

1.2.1. Computed the with-in class scatter matrix 𝑆𝑤  

𝑆𝑖 =  (𝑥−𝜇𝑖)(𝑥−𝜇𝑖)
𝑡

𝑥𝜖𝑤 𝑖

 

𝑆𝑤 = 𝑆1 + 𝑆2 

1.2.2. Computed the projection vectors, 𝜈1 and 𝜈2 

𝜈1 = 𝑆𝑤
−1 ∗ (𝜇1 − 𝜇2) 

𝜈2 = 𝜇1 − 𝜇2 

1.2.3. Projected the training samples using 𝜈1 and 𝜈2 

𝑦𝑖 = 𝜈1
𝑡 ∗ 𝑤𝑖  

 𝑧𝑖 = 𝜈2
𝑡 ∗ 𝑤𝑖  

1.2.4. Computed the histogram of the projected data 

The histogram gives the distribution of the projected data. We used this 
distribution to compute the cut-off classification threshold. 

1.2.5. Computed the cut-off threshold 

First, We computed the difference of the histograms for each projected 
samples; 𝑦1 − 𝑦2 and 𝑧1 − 𝑧2. Then, we used changes in sign to determine 
where to place the cut-off threshold. We assumed a maximum of two 
changes in sign and at least one change in sign. With the computed 
threshold, we obtain a range of values, in which the samples that inside that 
range will be classified in class 𝑤1, otherwise the samples will be classified in 
class 𝑤2. 

1.2.6. Classified the test samples and computed the error rate 

As explained before, we have 9,000 test samples for each class. We classified the 
samples and verified which samples were misclassified. 
 

𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒𝑤 𝑖 =
# 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑁
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We computed the error rate for each class, using two different classifiers. For 
classifier 𝐶𝑆𝑤we compute the with-in class scatter matrix 𝑆𝑤  as shown in section 

1.2.1. The other classifier is  𝐶𝐼; for this classifier we set 𝑆𝑤 = 𝐼.  When we talk about 
𝑆𝑤 ≠ 𝐼, we are saying that 𝑆𝑤  where computed as shown in section 1.2.1. We 
repeated steps 1.1.1 to 1.2.6 for 8 different data sets, 

1.3. Results 

At each data set subsection we give a brief analysis of the results, and then at the 
end of the results section we discuss the error rates and compare all experiments. 

1.3.1. Data set #1 

 
Figure 1 

 
Figure 2 

 
Figure 3 

 
Figure 4 

 
The first data set was used to show the behavior of the parametric method with 
highly correlated data. You can observe, see Figure 1 and Figure 2, that class 1 is 
really dense in the mean. On the other hand class 2 has a higher variance. In this 
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case, we can discriminate in the data using two thresholds, see Figure 4. However, 
you can observe in Figure 3 that the projection did not result in a separation of the 
classes. Moreover, there were no significant difference between the projections 
lines for 𝐶𝑆𝑤  and 𝐶𝐼, see Figure 1. We just concluded that the parametric method is 

not good for very highly correlated data. 

1.3.2. Data set #2 

 
Figure 5 

 
Figure 6 

 
Figure 7 

 
Figure 8 

 
For this data set we decreased the correlation between classes, see Figure 5 and Figure 
6. Now you can see well separated projected samples in Figure 7. However, there were 
no difference between the projections lines for 𝐶𝑆𝑤  and 𝐶𝐼, see Figure 5.  
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1.3.3. Data set #3 

 
Figure 9 

 
Figure 10 

 
Figure 11 

 
Figure 12 

 
For data set #3 we just rotated the data 45 degrees. The correlation was similar to that 
in data set #2. We can observe that there is no significant difference between the 
projections lines for 𝐶𝑆𝑤  and 𝐶𝐼, see Figure 9. 
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1.3.4. Data set #4 

 
Figure 13 

 
Figure 14 

 
Figure 15 

 
Figure 16 

 
For data set #4, we rotated the data -45 degrees. The statistical properties of the data 
were similar to the previous two data sets. The outcome of the experiment was very 
similar to our previous results. The separation of the projected data was acceptable and 
there is no significant difference between the projections lines for 𝐶𝑆𝑤  and 𝐶𝐼, see Figure 

13. 
 
For the next data sets we used our intuition to try different data sets that should create 
a difference between the projections lines for 𝐶𝑆𝑤  and 𝐶𝐼. 
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1.3.5. Data set #5 

 
Figure 17 

 
Figure 18 

 
Figure 19 

 
Figure 20 

 
From the computed data we know that the between-class scatter matrix 𝑆𝐵  measures 
the distance between the classes’ mean. On the other hand, the within-class scatter 
matrix 𝑆𝑤  takes in consideration the distribution of the data. Therefore, when we set 
𝑆𝑤 = 𝐼 we are only taking in account the distance between the means and when we 
compute the projection axis for 𝑆𝑤 ≠ 𝐼 we take in consideration the distance of the 
means and the variance of the data.  
 
Let define two variables which are different distances between the classes. 𝜉1 is the 
distance between classes 𝑤1 and 𝑤2 parallel to the projection axis when 𝑆𝑤 ≠ 𝐼. 𝜉2 is 
the distance between classes means 𝜇1 and 𝜇2, which are parallel to the projection axis 
when 𝑆𝑤 = 𝐼. Consequently, we expected that a data set with 𝜉1 ≪ 𝜉2 should result in 
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different projection vectors. We can create such data, if the distribution of the samples 
has a high variance orthogonal to the projection axis when 𝑆𝑤 ≠ 𝐼, see Figure 17. As 
expected, we got a significant difference between the projection vectors. As Figure 19 
shows, the optimal projection vector provides well separated classes. Figure 18 shows 
the projected data, and Figure 19 and Figure 20 sow the histogram of the projected 
data. We can observe that easily we can select a threshold that should effectively 
differentiate between classes. 

1.3.6. Data set #6 

 
Figure 21 

 
Figure 22 

 
Figure 23 

 
Figure 24 

 
For this data set we changed the distribution of the data. The most significant changes 
are the increment in the correlation between the classes and the difference between 
the classes variance. As with data set #5, we got a significant difference between the 
projected vectors. However, because the data were more correlated we get some 
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overlapping of samples in the projection. Nevertheless, the results, are better than we 
set up 𝑆𝑤 = 𝐼. 

1.3.7. Data set #7 

 
Figure 25 

 
Figure 26 

1.3.8. Data set #8 

 
Figure 27 

 
Figure 28 

 
For data sets #7 and #8 we went to higher feature dimensions in order to see how the 
system will behave. Our results were very similar to our previous experiments. 
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1.3.9. Error rate results 

 
Figure 29 

1.4. Analysis and discussion 

As many other pattern recognition strategies, the results of the parametric method if 
𝑆𝑤 ≠ 𝐼 or  𝑆𝑤 = 𝐼 depend on the properties of the data we are categorizing. From our 
experiments results, the error rates help us to understand the effects of making 𝑆𝑤 = 𝐼. 
As explained in section 1.3.5, the projections vector will be different when 𝜉1 ≪ 𝜉2. As 
we can see in Figure 29, for data sets 1, 2, 3, 4, 6, and 7 𝜉1 ≈ 𝜉2. Therefore, the error 
rates are the same no matter what projection vector we use. However, when we made 
𝜉1 ≪ 𝜉2, in data sets 5 and 6 we got different results for each projection vector. In 
addition we can see that we got better results for the classifier that has 𝑆𝑤 ≠ 𝐼. 
 
Our conclusion is that a parametric method with a classifier 𝐶𝐼  will be less effective than 
a parametric method with classifier 𝐶𝑆𝑤 , if the vector that connects the data means is 

not parallel to the optimal projection vector. We can pre-process the data to decide 
which classifier to use. However, a classifier with 𝑆𝑤 ≠ 𝐼 is the safe way to go. 
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1.5. Matlab’s code 

1.5.1. Code for classes with a feature size of two 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% ECE662 - Prof. Boutin         % 
% Homework #2 - Problem 1       % 
% March 23, 2008                % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%clear all variables and close all windows 
clear all 
close all 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Run properties 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%data filename 
filename = 'DataSet'; 
fnum = 1; 
%dimensions 
d = 2; 
%training samples 
Nt = 10^3; 
%number of bins for histograms 
bins = 30; 
%number of data sets 
ND = 6; 
%variable to store error rate of system for each data set 
error = zeros(4, ND); 
  
  
%loop for each data set 
for dataCount = 1:ND 
   
fnum = dataCount; 
  
display '%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%' 
sprintf('%s%s%d%s', 'Running ', filename, fnum, '.mat') 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Load data 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
data = load(sprintf('%s%s%d%s', 'data/', filename, fnum, '.mat')); 
class1 = data.Class1(:, 1:Nt); 
class2 = data.Class2(:, 1:Nt); 
mu = data.m1 - data.m2; 
Sw = data.Sw; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Project samples to straigth line for vector 1 with Sw 
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w1 = inv(Sw)*mu;  
if(mu == 0)  
    w1 = [0.001; 0.001];  
end 
w1 = w1/norm(w1); 
y1 = w1'*class1; 
y2 = w1'*class2; 
minY = min([y1, y2]); 
maxY = max([y1, y2]); 
stepY = (maxY-minY)/(bins); 
angleY = atan(w1(2)/w1(1)); 
wx1 = cos(angleY).*[min(y1, y2); max(y1, y2)]; 
wy1 = sin(angleY).*[min(y1, y2); max(y1, y2)]; 
%histograms for Sw 
x1 = minY:stepY:maxY; 
ny1 = hist(y1, x1); 
ny2 = hist(y2, x1); 
%plot histogram for projected data with Sw 
f = figure; 
hold on 
bar(x1, ny1, 'r'); 
bar(x1, ny2, 'b'); 
legend('Class 1', 'Class 2'); 
xlabel('Event'); 
ylabel('Number of occurrences'); 
title(sprintf('%s%s %d', 'Histogram of projected data for ', filename, fnum), 'FontSize', 16); 
hold off 
saveas(f, sprintf('%s%s%d%s', 'img/', 'histo_', fnum, '.jpg'), 'jpg'); 
close(f); 
%plot histogram difference for projected data with Sw 
f=figure; 
hold on 
bar(x1, ny1-ny2, 'r'); 
legend('Class 1 - Class 2'); 
xlabel('Event'); 
ylabel('Number of occurrences in Class 1 - Class 2'); 
title(sprintf('%s%s %d', 'Difference histogram of projected data for ', filename, fnum), 'FontSize', 16); 
hold off 
saveas(f, sprintf('%s%s%d%s', 'img/', 'histoDiff_', fnum, '.jpg'), 'jpg'); 
close(f); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
%% Projections with Sw = I 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
w2 = mu/norm(mu); 
if(mu == 0)  
    w2 = [0.001; 0.001];  
end 
z1 = w2'*class1; 
z2 = w2'*class2; 
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minZ = min([z1, z2]); 
maxZ = max([z1, z2]); 
stepZ = (maxZ-minZ)/(bins); 
angleZ = atan(w2(2)/w2(1)); 
wx2 = cos(angleZ).*[min(z1, z2); max(z1, z2)]; 
wy2 = sin(angleZ).*[min(z1, z2); max(z1, z2)]; 
%histograms for Sw = I 
x2 = minZ:stepZ:maxZ; 
nz1 = hist(z1, x2); 
nz2 = hist(z2, x2); 
%plot histogram for projected data with Sw = I 
figure 
hold on 
bar(x2, nz1, 'r'); 
bar(x2, nz2, 'b'); 
legend('Class 1', 'Class 2'); 
xlabel('Event'); 
ylabel('Number of occurrences'); 
title(sprintf('%s%s %d', 'Histogram of projected data (S_w = I) for ',... 
    filename, fnum), 'FontSize', 16); 
hold off 
saveas(f, sprintf('%s%s%d%s', 'img/', 'HistoProjSwI_', fnum, '.jpg'), 'jpg'); 
close(f); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
%% Plot 2D data 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
f = figure('Position', [1000, 300, 600, 600]); 
hold on 
plot(class1(1, :), class1(2, :), '+r'); 
plot(class2(1, :), class2(2, :), 'ob'); 
plot(wx1, wy1, '-k', 'LineWidth', 3); 
plot(wx2, wy2, '--m', 'LineWidth', 2); 
legend('Class 1', 'Class 2', 'Vector with S_w', 'Vector with S_w = I'); 
xlabel('x_1', 'FontSize', 14); 
ylabel('x_2', 'FontSize', 14); 
title(sprintf('%s%s %d', '2-D Data Plot of ', filename, fnum), ... 
    'FontSize', 16); 
xLimit = xlim; 
yLimit = ylim; 
grid on; 
hold off 
saveas(f, sprintf('%s%s%d%s', 'img/', 'data_', fnum, '.jpg'), 'jpg'); 
close(f); 
%plot projected samples 
f=figure('Position', [1000, 300, 600, 600]); 
hold on 
plot(cos(angleY).*y1, sin(angleY).*y1, '+r'); 
plot(cos(angleY).*y2, sin(angleY).*y2, 'ob'); 
xlabel('x_1', 'FontSize', 14); 
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ylabel('x_2', 'FontSize', 14); 
legend('Class 1', 'Class 2'); 
title(sprintf('%s%s %d', 'Projected Data Plot of ', filename, fnum), 'FontSize', 16); 
xlim(xLimit); 
ylim(yLimit); 
grid on; 
hold off; 
saveas(f, sprintf('%s%s%d%s', 'img/', 'ProjData_', fnum, '.jpg'), 'jpg'); 
close(f); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
%% Compute thresholds for y 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
%compute discrimination threshold 
len = length(ny1); 
th = len.*ones(1, 2); 
count = 0; 
%check polarity of first bin in difference histogram 
polar = 0; 
if( (ny1(1) - ny2(1)) <= 0 ) 
    polar = 0; 
else 
    polar = 1; 
    th(1) = 1; 
    count = 1; 
end 
%loop to get thresholds 
for i=2:len 
   if( ((ny1(i) - ny2(i)) < 0) && (polar == 1) ) 
       count = count + 1; 
       if ( count > 2 ) 
           display 'More than two thresholds' 
           break; 
       end 
       th(count) = i - 1; 
       polar = 0; 
   elseif( ((ny1(i) - ny2(i)) > 0) && (polar == 0) ) 
       count = count + 1; 
       if ( count > 2 ) 
           display 'More than two thresholds' 
           break; 
       end 
       th(count) = i; 
       polar = 1; 
   end 
end 
  
%compute error rate of classification algorithm 
expC1 = w1'*data.Class1(:, Nt+1:end); 
expC2 = w1'*data.Class2(:, Nt+1:end); 
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len = length(expC1); 
errorY1 = 0; 
errorY2 = 0; 
LB = x1(th(1)) - (x1(2)-x1(1))/2; 
UB = x1(th(2)) + (x1(2)-x1(1))/2; 
for i=1:len 
    if( not( ( (LB <= expC1(i)) && (expC1(i) <= UB) ) ) ) 
        errorY1 = errorY1 + 1; 
    end 
    if( (LB <= expC2(i)) && (expC2(i) <= UB) ) 
        errorY2 = errorY2 + 1; 
    end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Threshold for projected data with Sw = I     %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%compute discrimination threshold 
len = length(nz1); 
th = len.*ones(1, 2); 
count = 0; 
%check polarity of first bin in difference histogram 
polar = 0; 
if( (nz1(1) - nz2(1)) <= 0 ) 
    polar = 0; 
else 
    polar = 1; 
    th(1) = 1; 
    count = 1; 
end 
%loop to get thresholds 
for i=2:len 
   if( ((nz1(i) - nz2(i)) < 0) && (polar == 1) ) 
       count = count + 1; 
       if ( count > 2 ) 
           display 'More than two thresholds' 
           break; 
       end 
       th(count) = i - 1; 
       polar = 0; 
   elseif( ((nz1(i) - nz2(i)) > 0) && (polar == 0) ) 
       count = count + 1; 
       if ( count > 2 ) 
           display 'More than two thresholds' 
           break; 
       end 
       th(count) = i; 
       polar = 1; 
   end 
end 
  
%compute error rate of classification algorithm 
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expC1 = w2'*data.Class1(1:d, Nt+1:end); 
expC2 = w2'*data.Class2(1:d, Nt+1:end); 
len = length(expC1); 
errorZ1 = 0; 
errorZ2 = 0; 
LB = x2(th(1)) - (x2(2)-x2(1))/2; 
UB = x2(th(2)) + (x2(2)-x2(1))/2; 
for i=1:len 
    if( not( ( (LB <= expC1(i)) && (expC1(i) <= UB) ) ) ) 
        errorZ1 = errorZ1 + 1; 
    end 
    if( (LB <= expC2(i)) && (expC2(i) <= UB) ) 
        errorZ2 = errorZ2 + 1; 
    end 
end 
  
%compute error rate 
error(:, dataCount) = [ errorY1;  
                        errorY2; 
                        errorZ1; 
                        errorZ2]/len; 
  
end 
  
%plot error rate of each data set 
f=figure; 
hold on 
bar(1:ND, error') 
legend('Class 1', 'Class 2', 'Class 1 with S_w = I', 'Class 2 with S_w = I'); 
title('Classification error rate of the system for each data set (9,000 samples)'); 
xlabel('Data sets'); 
ylabel('Error rate'); 
hold off; 
saveas(f, sprintf('%s%s%s', 'img/', 'error', '.jpg'), 'jpg'); 
 

1.1.1. For the classes with features vector greater than two we used a similar code. 
The only thing we removed was the plot for 2-D data. We found that was a 
waste of space and paper to add the code here. If you need this code, let me 
know. 
 

1.1.2. Data generator code 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% ECE 662 Homework #1           % 
% Generates Normal Data         % 
% Professor Boutin              % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%clear all data 
clear all; 
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close all; 
  
%Procedure to generate random data 
  
%data size, number of samples 
N = 10^4; 
%size of feature vector 
d = 2; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Generate data 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%mean of each feature 
mu1 = zeros(d, 1); mu1(1) = 0; mu1(2) = 0; 
mu2 = -mu1; mu2(1) = -30; mu2(2) = 0; 
%variance of each mean 
sd1 = 1 * ones(1, d); sd1(1) = 100; sd1(2) = 200; 
sd2 = 1 * sd1;  sd2(1) = 25; sd2(2) = 150; 
%generate data 
DataGen(N, d, mu1, mu2, sd1, sd2, 'DataSet6', -30*pi/180, -30*pi/180); 

 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% ECE 662 Homework #1           % 
% Generates Normal Data         % 
% Professor Boutin              % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%N - number of samples 
%d - size of feature vector 
%m1 - mean vector 
%sd - variance vector 
%fileName - data is stored in a file with this name 
function DataGen(N, d, m1, m2, sd1, sd2, fileName, z1, z2) 
  
%reserve memory for variable 
Class1 = zeros(d, N); 
Class2 = zeros(d, N); 
%generate normalize data 
for i = 1:d 
    for j=1:N 
        Class1(i, j) = m1(i) + sqrt(sd1(i))*randn(1); 
        Class2(i, j) = m2(i) + sqrt(sd2(i))*randn(1); 
    end 
end 
  
%Rotate classes data 
if( (m2(1) ~= 0) || (m2(2) ~= 0) ) 
    Class2 = Class2 - m2*ones(1,N); 
end 
Class1 = [cos(z1), -sin(z1); sin(z1), cos(z1)]*Class1; 
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Class2 = [cos(z2), -sin(z2); sin(z2), cos(z2)]*Class2; 
if( (m2(1) ~= 0) || (m2(2) ~= 0) ) 
    Class2 = Class2 + m2*ones(1,N); 
end 
  
%Compute scatter matrices 
S1 =(Class1-m1*ones(1,N))*(Class1-m1*ones(1,N))'; 
S2 =(Class2-m2*ones(1,N))*(Class2-m2*ones(1,N))'; 
Sw = S1 + S2; 
Sb = (m1 - m2)*(m1- m2)'; 
  
%save 
save(sprintf('%s%s%s', 'data/', fileName, '.mat'), 'Class1', 'Class2', 'm1', 'm2', 'S1', 'S2', 'Sw', 'Sb'); 
sprintf('%s%s%s', 'Data ', fileName, ' generated.') 
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2. Neural networks and Support Vector Machines 

2.1. Experiment description 

2.1.1. We used 40 black and white image samples shown in Figure 45. The image 
samples consisted of the letter A and R typed in different computer typefaces. 
With the exception of two four image samples that were handwritten. 

2.1.2. We repeated each experiment for different training set sizes (6, 10, and 14 
samples for each letter). The remaining samples were used for testing.  

2.2. Procedure 

2.2.1. The first step is to pre-process the input. Each image was cropped as much as 
possible. Then, we resized all images to the same width and height (50 x 50 
pixels). 

2.2.2. After the pre-process, we used the raw image input for one of the Neural 
Network experiments. For the other experiments we extracted a set of features 
explained in the section below. 

2.3. Feature extraction 
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2.3.1. Figure 30 and Figure 31 show how we computed the features. For the first 
ten features we computed histogram of the number of pixels with a zero (black 
pixels) for each row and columns. Then, we partition the each histogram in five 
equally spaced regions and each feature contained the area under the curve of 
the histogram for its respective region. For features 11 to 20, we rotated the 
image 45 degrees counter-clockwise, and then followed the same procedure 
discussed above. The last three features, Figure 31, are the number of pixels 
with zero inside each frame respectively. 

𝑓21 = 𝑏𝑎𝑙𝑐𝑘 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑏𝑙𝑢𝑒 𝑠𝑞𝑢𝑎𝑟𝑒 
𝑓22 = 𝑏𝑙𝑎𝑐𝑘 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑦𝑒𝑙𝑙𝑜𝑤 𝑠𝑞𝑢𝑎𝑟𝑒 − 𝑓21 
𝑓23 = 𝑏𝑙𝑎𝑐𝑘 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛  𝑔𝑟𝑒𝑒𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 − 𝑓22 − 𝑓21 

2.4. The Neural Networks experiments 

2.4.1. For the NN experiments we made three different systems. One received the 
image raw data as input (each pixel in the image is an input) and with a five 
digit binary output. The second experiment was using our 23 features set and 
five digits binary output. The third experiment used the features, but the 
output was a single integer. All systems had two hidden layers. We used 
Matlab’s NN algorithms to create and train the networks. 

2.5.  Support vector machine 

2.5.1. For the SVM experiments we used Matlab’s SVM functions to create and 
train the systems. The SVM were based on three different kernel functions—
liner, quadratic, polynomial, and Gaussian Radial Basis. 

2.6. Results and analysis 

2.6.1. NN training examples 

 
Figure 32 
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Figure 33 

 

 
Figure 34 

 
Notice that the number of training samples 𝑁𝑡  is 12, 20, and 28. This is because is the sum 
of A and R letters and we have 6, 10, and 14 training samples for each letter. From these 
results I would like to highlight the similarities between Figure 33 and Figure 34. With NN 
sometimes adding more training samples is not necessary. It can lead to overfitting the 
network. For these systems, we get to our goal of 0.001 error rate in less than 60 
interations. 
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Figure 35 

 
Figure 36 

 
Figure 35 and Figure 36 are two examples of the training of two different NN systems. For 
the system in Figure 35, we used the 23 extracted features as the network input and the out 
was 5 digits binary output. The system never achieved our performance goal of 0.001. On 
the other hand, when we used the features and the output was a single integer (1 or 2), the 
system reached its goal in less than 6 iterations. 

2.6.2. Error rate 

 
Figure 37 

 
Figure 38 

 
As you can see in Figure 37 and Figure 38, the systems error rates varies by the size of the 
training sample. Particularly interesting was to see that for a NN with the image raw input 
the best performance was obtained when we have the fewer training samples. The 
increment of training data led to the over fitting of the NN. Overall we observed that too 
many training samples (over 14 samples) led to over fitting. However, we decided to show 
the error rate from two different runs to point out the effect of the selected training data. 
Our algorithms selected the training samples randomly. We just tell the system how many 
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samples to choose. You can see a difference in performance in the figures above. Therefore, 
we can conclude that we need to analyze the data used for training. Selecting outliners for 
training can lead to misclassifications. Finally when designing an NN or SVM we need to 
study our data to determine what training samples are good and how many of them we are 
going to use. 
 
When comparing NN with SVM we can say that we observe more consistent results in the 
side of SVM. NN systems are very sensitive to input noise. On the other hand, for SVM we 
need to preprocess all data in order to extract features. Although we did the same 
preprocessing of the data for NN, SVM sees to handle features better than NN. However, 
my intuition led me to think that this is true given the characteristics of my problem—
identifying two letters. Therefore, NN could outperform SVM in other applications. 
 
We would like to clarify that there is a simple concept that applies to these experiments; 
trash in, trash out. We tried to select meaningful features from the characters to detect. 
Given that we were only dealing with two classes of characters I found enough the 23 
features mentioned above. However, we need to admit that a comprehensive study of this 
problem should be done in order to decide which features are good for classification. A new 
set of features may lead to better and more consistent results. 

2.7. Matlab’s code 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% ECE 662: Homework #2         %% 
%% Problem 2                    %% 
%% Prof. Boutin                 %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%clear all data and variables 
clear all 
%close all windows 
close all 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Load data                        %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%load data 
letters = ['A', 'R']; %letter to categorize 
numC = size(letters, 2); %number of letters or classes to categorize 
numSL = 20;   %Number of training samples per letter 
letBinSize = 4; %binary size of letters 
%Next we load each letter image. All images 
%should have the same dimensions 
[m, n] = size(imread('char/A1.tif', 'tif')); 
%create array that is going to contain training data 
nnData = zeros( 50*50, numSL * numC ); 
svmData = zeros( 23, numSL * numC ); 
outDataB = zeros( letBinSize, numSL * numC ); 
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outDataL = zeros( 1, numSL * numC ); 
  
%get training data 
for i = 1 : numC %loops for each letter 
    for j = 1 : numSL %loops for each letter sample 
         
        %load image 
        temp = imread(sprintf('%s%s%d%s', 'char/', letters(i),... 
                    j, '.tif'), 'tif'); 
         
        %give label 
        outDataB(:, (i-1) * numSL + j ) = de2bi(i, letBinSize); 
        outDataL(:, (i-1) * numSL + j ) = i; 
         
        %preprocess image for NN 
        nnData(:, (i-1) * numSL + j) = reshape((1-preprocess(temp)), 1, []); 
        %preprocess image and get features for NN and SVM 
        svmData(:, (i-1) * numSL + j) = getFeatures(preprocess(temp)); 
    end 
end 
  
%loop to increment training set size 
error = zeros(3, 7); 
count = 1; 
for i = 0.3:0.2:0.7 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% separate data for training, evaluation, and testing 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
index = 1:numSL * numC; 
[trainD1, evalD1, testD1] = dividevec(index(1:20), index(1:20), 0, 1-i); 
[trainD2, evalD2, testD2] = dividevec(index(21:40), index(21:40), 0, 1-i); 
%merge data for raw NN approoach 
trainSetNN =    [nnData(:, trainD1.P) nnData(:, trainD2.P)]; 
outTrainNN =    [outDataB(:, trainD1.P) outDataB(:, trainD2.P)]; 
testSetNN =     [nnData(:, testD1.P) nnData(:, testD2.P)]; 
%outTestNN =     [outDataB(:, testD1.P) outDataB(:, testD2.P)]; 
%merge data for feature based NN and SVM approach 
trainSetSVM =   [svmData(:, trainD1.P) svmData(:, trainD2.P)]; 
outTrainSVM =   [outDataL(:, trainD1.P) outDataL(:, trainD2.P)]; 
testSetSVM =    [svmData(:, testD1.P) svmData(:, testD2.P)]; 
outTestSVM =    [outDataL(:, testD1.P) outDataL(:, testD2.P)]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Train NN systems 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%create NN network with raw image input and binary output 
numInternalNeurons = [20, size(outTrainNN, 1)]; 
netB = newff(minmax(trainSetNN), numInternalNeurons, ... 
            {'logsig', 'logsig'}, 'traingdx'); 
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%train network 
netB.LW{2,1} = netB.LW{2,1}*0.01; 
netB.b{2} = netB.b{2}*0.01; 
netB.performFcn = 'sse';          
netB.trainParam.goal = 0.0001;     
netB.trainParam.show = 20;       
netB.trainParam.epochs = 5000;   
netB.trainParam.mc = 0.95; 
[netB,trB]=train(netB, trainSetNN, outTrainNN); 
%plot and save training performance 
f = figure; 
hold on 
plot(trB.epoch, trB.perf, '-r', 'LineWidth', 2) 
title(sprintf('%s%d%s', ... 
         'Neural Network Raw Image Input and Binary Output (N_t = ', ... 
         size(trainSetNN, 2), ')'), 'FontSize', 14); 
xlabel('Iterations'); 
ylabel('Performance'); 
legend('Performance of system at each training iteration'); 
hold on 
%saveas(f, sprintf('%s%d%s', 'img\NNRaw', ... 
%            size(trainSetNN, 2), '.jpg'), 'jpg'); 
close(f); 
      
%create NN network with features as inputs and single integer output 
numInternalNeurons = [23, 1]; 
netS = newff(minmax(trainSetSVM), numInternalNeurons, ... 
            {'logsig', 'purelin'}, 'trainlm'); 
%train network 
netS.performFcn = 'sse';          
netS.trainParam.goal = 0.0001;     
netS.trainParam.show = 20;       
netS.trainParam.epochs = 5000;  
[netS,trS]=train(netS, trainSetSVM, outTrainSVM); 
%plot and save training performance 
f = figure; 
hold on 
plot(trS.epoch, trS.perf, '-g', 'LineWidth', 2) 
title(sprintf('%s%d%s', ... 
         'Neural Network Features Input and Integer Output (N_t = ', ... 
         size(trainSetNN, 2), ')'), 'FontSize', 14); 
xlabel('Iterations'); 
ylabel('Performance'); 
legend('Performance of system at each training iteration'); 
hold on 
%saveas(f, sprintf('%s%d%s', 'img\NNFS', ... 
%            size(trainSetNN, 2), '.jpg'), 'jpg'); 
close(f); 
  
%create NN network with features as inputs and binary output 
numInternalNeurons = [23, size(outTrainNN, 1)]; 
netFB = newff(minmax(trainSetSVM), numInternalNeurons, ... 
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            {'logsig', 'logsig'}, 'trainlm'); 
%train network 
netFB.performFcn = 'sse';          
netFB.trainParam.goal = 0.0001;     
netFB.trainParam.show = 20;       
netFB.trainParam.epochs = 5000; 
[netFB,trFB]=train(netFB, trainSetSVM, outTrainNN); 
%plot and save training performance 
f = figure; 
hold on 
plot(trFB.epoch, trFB.perf, '-b', 'LineWidth', 2) 
title(sprintf('%s%d%s', ... 
         'Neural Network Features Input and Binary Output (N_t = ', ... 
         size(trainSetNN, 2), ')'), 'FontSize', 14); 
xlabel('Iterations'); 
ylabel('Performance'); 
legend('Performance of system at each training iteration'); 
hold on 
%saveas(f, sprintf('%s%d%s', 'img\NNFB', ... 
%            size(trainSetNN, 2), '.jpg'), 'jpg'); 
close(f); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Test NN systems 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%size of test output vector 
sVO =  size(outTestSVM, 2); 
  
%create NN network with raw image input and binary output 
outSim = sim(netB, testSetNN); 
outSim = bi2de(uint32(round(outSim))'); 
res = outSim == outTestSVM'; 
error(count, 1) = 1 - sum( res ) / sVO; 
  
%create NN network with features as inputs and single integer output 
outSim = sim(netS, testSetSVM); 
outSim = uint32(round(outSim))'; 
res = outSim == outTestSVM'; 
error(count, 2) = 1 - sum( res ) / sVO; 
  
%create NN network with features as inputs and binary output 
outSim = sim(netFB, testSetSVM); 
outSim = bi2de(uint32(round(outSim))'); 
res = outSim == outTestSVM'; 
error(count, 3) = 1 - sum( res ) / sVO; 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Train SVM systems 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%linear kernel 
svm1 = svmtrain(trainSetSVM', outTrainSVM', 'Kernel_Function', 'linear'); 
  
%quadratic  kernel 
svm2 = svmtrain(trainSetSVM', outTrainSVM', 'Kernel_Function', 'quadratic'); 
  
%polynomial kernel 
svm3 = svmtrain(trainSetSVM', outTrainSVM', 'Kernel_Function', 'polynomial'); 
  
%Gaussian Radial Basis Function kernel (rbf) 
svm4 = svmtrain(trainSetSVM', outTrainSVM', 'Kernel_Function', 'rbf'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Test SVM systems 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%linear kernel 
outSim = svmclassify(svm1, testSetSVM'); 
res = outSim == outTestSVM'; 
error(count, 4) = 1 - sum( res ) / sVO; 
  
%quadratic  kernel 
outSim = svmclassify(svm2, testSetSVM'); 
res = outSim == outTestSVM'; 
error(count, 5) = 1 - sum( res ) / sVO; 
  
%polynomial kernel 
outSim = svmclassify(svm3, testSetSVM'); 
res = outSim == outTestSVM'; 
error(count, 6) = 1 - sum( res ) / sVO; 
  
%Gaussian Radial Basis Function kernel (rbf) 
outSim = svmclassify(svm4, testSetSVM'); 
res = outSim == outTestSVM'; 
error(count, 7) = 1 - sum( res ) / sVO; 
  
count = count + 1; 
  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Plot error 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
f = figure('Position', [200, 200, 800, 400]); 
hold on 
bar(0.3:0.2:0.7, error) 
xlabel('Classification systems error as increment in training set size'); 
ylabel('Error rate'); 
title('Error Rate For Different Training Set Sizes', 'FontSize', 14); 
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legend('NN Raw/Binary', 'NN Feature/Integer', 'NN Feature/Binary', ... 
    'SVM Linear', 'SVM X^2', 'SVM X^3', 'SVM Gaussian', ... 
    'Orientation', 'vertical', 'Location', 'NorthEastOutside'); 
xlim([0.2 0.8]); 
ylim([0 1]); 
hold off 
saveas(f, 'img\errorHisto2.jpg', 'jpg'); 
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3. Parzen windows, nearest neighborhood, and k- nearest 
neighborhood 

3.1. Experiment description 

3.1.1. For these experiments we used the same data as Section 2 
3.1.2. We used Matlab’s principal component analysis (PCA) algorithm to project 

the data. 

 
Figure 39 

The figure above shows how much the components describe the data. We have that 
with the first two components we can describe almost 60% of the data. Below you 
can observe how our data was projected. In Figure 40, you can see that each class 
has a well defined cluster, with the exception of a few outliners. 

3.1.3. We projected the data to a 2-D plane. 

 
Figure 40 
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3.1.4. Parzen Windows 

For the Parzen Windows we used a square window. We tested different sizes and 
showed the results for a window width of 1.5. 

3.1.5. K-Nearest Neighbor (K-NN) 

We created an algorithm for K-NN, and the set k to one in order to implement 
nearest neighbor approach. The distance between samples was Euclidean distance. 
 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  (𝑥𝑡𝑟𝑎𝑖𝑛 − 𝑥𝑡𝑒𝑠𝑡 )2 

3.2. Results and analysis 

 

We got interesting results from our experiments. First, the Parzen Window strategy gave a 
noticeable decrease in error rate as we incremented the training set size. We also saw the 
same behavior with the K-NN systems, but not as consistent as with the Parzen Window. 
Also, we can notice that incrementing the number of closest neighbors in the nearest 
neighbor approach increase the error rate. This may be due to our sparse data. You can 
notice a separation between the classes, see Figure 40. The problem is that the classes are 
really close at the boundary of the clusters. Therefore, as we increase the number of 
neighbors the probability of mismatch increases. This means that given our data, a 
parametric method, as the one we used in section 1, should be a better strategy to classify 
our classes. You can see examples of outliers, when using a Pazen Window in Figure 43 and 
Figure 44. 
 

 
Figure 41 

 
Figure 42 
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Figure 43 

 
Figure 44 

 
 

3.3. Matlab’s code 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% ECE 662: Homework #2         %% 
%% Problem 2                    %% 
%% Prof. Boutin                 %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%clear all data and variables 
clear all 
%close all windows 
close all 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Load data                        %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%load data 
letters = ['A', 'R']; %letter to categorize 
numC = size(letters, 2); %number of letters or classes to categorize 
numSL = 20;   %Number of training samples per letter 
%Next we load each letter image. All images 
%should have the same dimensions 
[m, n] = size(imread('char/A1.tif', 'tif')); 
%create array that is going to contain training data 
data = zeros( numSL * numC, 23 ); 
outData = zeros( numSL * numC, 1 ); 

  
%get training data 
for i = 1 : numC %loops for each letter 
    for j = 1 : numSL %loops for each letter sample 

         
        %load image 
        temp = imread(sprintf('%s%s%d%s', 'char/', letters(i),... 
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                    j, '.tif'), 'tif'); 

         
        %give label 
        outData( (i-1) * numSL + j, : ) = i; 

  
        %preprocess image and get features for NN and SVM 
        data( (i-1) * numSL + j, :) = getFeatures(preprocess(temp)); 
    end 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Project from 23-d to 2-d 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%project data for class A 
stdData = std(data); 
stdData = data ./ repmat(stdData, size(data, 1), 1); 
[pca, pData, vars, t] = princomp(stdData); 

  
%plot a pareto percent of variability explained 
percent_explained = 100*vars/sum(vars); 
f = figure; 
hold on 
pareto(percent_explained); 
xlabel('Principal Component') 
ylabel('Variance Explained (%)') 
hold off 
%saveas(f, 'img\PCAVar.jpg', 'jpg'); 
close(f); 

  
%plot projected data 
f = figure; 
hold on 
plot(pData(1:20, 1), pData(1:20, 2), '+r'); 
plot(pData(21:40, 1), pData(21:40, 2), 'ob'); 
xlabel('1st Principal Component'); 
ylabel('2nd Principal Component'); 
legend('Letter A', 'Letter R') 
title('Projected 23-D Feature Space to PCA 2-D Space', 'FontSize', 12) 
hold off 
%saveas(f, 'img\2DProjection.jpg', 'jpg'); 
close(f); 

  
%plot projected data 
f = figure; 
hold on 
plot3(pData(1:20, 1), pData(1:20, 2), pData(1:20, 3), '+r'); 
plot3(pData(21:40, 1), pData(21:40, 2), pData(21:40, 3), 'ob'); 
xlabel('1st Principal Component'); 
ylabel('2nd Principal Component'); 
zlabel('3nd Principal Component'); 
legend('Letter A', 'Letter R') 
title('Projected 23-D Feature Space to PCA 3-D Space', 'FontSize', 12) 
grid on 
view(3) 
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hold off 
%saveas(f, 'img\3DProjection.jpg', 'jpg'); 
close(f); 

  
%loop to increment training set size 
error = zeros(3, 5); 
count = 1; 
for i = 0.3:0.2:0.7 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Separate data for training, evaluation, and testing 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
index = 1:numSL * numC; 
d = 3; %dimensions of projected data 
[trainD1, evalD1, testD1] = dividevec(index(1:20), index(1:20), 0, 1-

i); 
[trainD2, evalD2, testD2] = dividevec(index(21:40), index(21:40), 0, 1-

i); 
%merge data for raw NN approoach 
trainSetA =   pData(trainD1.P, 1:d); 
%outTrainA =   outData(trainD1.P, 1:d); 
trainSetR =   pData(trainD2.P, 1:d); 
%outTrainR =   outData(trainD2.P, 1:d); 
testSet =     [pData(testD1.P, 1:d); pData(testD2.P, 1:d)]; 
outTest =     [outData(testD1.P, 1); outData(testD2.P, 1)]; 
%size of test data 
sVO = size(outTest, 1); 
%size of train data 
nT = size(trainSetA, 1); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Parzen Window Classification 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%train and test system 
simOut = ParzenWindowSQR2(trainSetA, trainSetR, testSet, 3, d); 
%Compute error 
res = simOut == outTest; 
pwE = 1 - sum( res ) / sVO; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% nearest neighbor Classification 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%train and test system 
simOut = KNN(trainSetA, trainSetR, testSet, 1, d); 
%Compute error 
res = simOut == outTest; 
nnE = 1 - sum( res ) / sVO; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% k-nearest neighbor Classification 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%train and test system 
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simOut = KNN(trainSetA, trainSetR, testSet, 3, d); 
%Compute error 
res = simOut == outTest; 
knnE(1, 1) = 1 - sum( res ) / sVO; 

  
%train and test system 
simOut = KNN(trainSetA, trainSetR, testSet, 5, d); 
%Compute error 
res = simOut == outTest; 
knnE(1, 2) = 1 - sum( res ) / sVO; 

  
%train and test system 
if( nT < 9) simOut = outTest; 
else 
simOut = KNN(trainSetA, trainSetR, testSet, 9, d); 
end 
%Compute error 
res = simOut == outTest; 
knnE(1, 3) = 1 - sum( res ) / sVO; 

  
%save error 
error(count, :) = [pwE, nnE, knnE]; 

  
count = count + 1; 

  
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Plot error 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
f = figure('Position', [200, 200, 800, 400]); 
hold on 
bar(0.3:0.2:0.7, error) 
xlabel('Classification error'); 
ylabel('Error rate'); 
title('Error Rate For Different Training Set Size', 'FontSize', 14); 
legend('Parzen Window', 'Nearest Neighbor', '3-Nearest Neighbor', ... 
    '5-Nearest Neighbor', '9-Nearest Neighbor', 'Location', 

'NorthEastOutside'); 
xlim([0.2 0.8]); 
ylim([0 1]); 
hold off 
%saveas(f, 'img\errorHisto3D1.jpg', 'jpg'); 

 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Function 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function simOut = ParzenWindowSQR2(trainSet1, trainSet2, testSet, h, d) 

  
%width of window and volume of window 
V = h^d; 
%Number of training samples 
n = size(trainSet1, 1); 
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%Number of test samples 
sVO = size(testSet, 1); 
%vector for classified test samples 
simOut = zeros(sVO, 1); 

  
%compute probability of each test sample and classify 
for k = 1 : sVO 

     
    %window coordinates 
    lB = testSet(k, :) - (h/2)*ones(1, d); 
    uB = testSet(k, :) + (h/2)*ones(1, d); 

          
    %find elements in A and R that their 
    %features are inside the range of the window 
    %samples from trainSet1 that are in window 
    winS = 0; 
    for z=1:n 
         if(lB <= trainSet1(z, :)) 
             if(uB >= trainSet1(z, :)) 
                 winS = winS + 1; 
             end 
         end 
         if(lB <= trainSet2(z, :)) 
             if(uB >= trainSet2(z, :)) 
                 winS = winS - 1; 
             end 
         end 
    end 
    %if wins >= 0 the test sampe is an A, R otherwise 
    if(winS > 0) 
        simOut(k) = 1; 
    elseif(winS < 0) 
        simOut(k) = 2; 
    else 
        simOut(k) = 0; 
    end 
end 

 

 

 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Function 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function simOut = KNN(trainSetA, trainSetR, testSet, k, d) 

  
%size of vectors 
Ntest = size(testSet, 1); 
N = size(trainSetA, 1); 

  
%output vector 
simOut = zeros(Ntest, 1); 

  
%distance vectors 
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distA = zeros(N, 1); 
distR = zeros(N, 1); 

  
%loop to go trough all test samples 
for i=1:Ntest 
    %loop to go through all train samples 
    for j=1:N 
        %init 
        distA(j) = 0; 
        %loop to go through features 
        for z=1:d 
            %distance from A 
            distA(j) = distA(j) + (trainSetA(j, z) - testSet(i, z))^2; 
            distR(j) = distR(j) + (trainSetR(j, z) - testSet(i, z))^2; 
        end 
        distA(j) = sqrt(distA(j)); 
        distR(j) = sqrt(distR(j)); 
    end 

     
    %sort distances in acending order 
    distA = sort(distA, 'ascend'); 
    distR = sort(distR, 'ascend'); 

     
    %loop to take the closest samples 
    counter = 0; 
    acount = 1; 
    rcount = 1; 
    for j=1:k 
        if(distA(acount) <= distR(rcount)) 
            counter = counter + 1; 
            acount = acount + 1; 
        else 
            counter = counter - 1; 
            rcount = rcount + 1; 
        end 
    end 
    %decide 
    if(counter >= 0) 
        simOut(i) = 1; 
    else 
        simOut(i) = 2; 
    end 
end 
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4. Appendix 

4.1. Image letter samples 

          

          

          

          
Figure 45 

4.2. Matlab’s code used by most problems 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% ECE 662: Homework #2         %% 
%% Problem 2                    %% 
%% Prof. Boutin                 %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%I_in is a binary matrix representing a black and white 
%image. This function finds the boundary closest to the character. 
%Then it cropped and resize the image. 
%The function returns a 7x7 matrix with the preprocessed image. 
function I = preprocess(I_in) 
  
%find edge of image 
I = edge(uint8(I_in)); 
  
%fill inside of character 
se = strel('square',2); 
I = imdilate(I, se); 
I= imfill(I,'holes'); 
  
%find tigth boundary for character 
I = bwlabel(I); 
%disp(num);           %% If you want to check how many thing were found 
I = regionprops(I, 'BoundingBox'); 
bounds = floor([I.BoundingBox]); 
  
%check bounds are inside image boundaries 
if(bounds(1) < 1) 
    bounds(1) = 1; 
end 
if(bounds(2) < 1) 
    bounds(2) = 1; 
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end 
if(bounds(2) + bounds(4) > size(I_in, 1)) 
    bounds(4) = size(I_in, 1) - bounds(2); 
end 
if(bounds(1) + bounds(3) > size(I_in, 2)) 
    bounds(3) = size(I_in, 2) - bounds(1); 
end 
  
%crop image 
I = I_in(bounds(2):bounds(2) + bounds(4), ... 
            bounds(1):bounds(1) + bounds(3)); 
         
 
 

 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% ECE 662: Homework #2         %% 
%% Problem 2                    %% 
%% Prof. Boutin                 %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%This funtions rotates the image to the given 
%degree and compute the sum of each column and row 
%in the rotated image 
function F = getFeatures(img) 
  
%reserve space for feature vector 
F = zeros(1, 23); 
  
%preprocess image and compute dist 
I0 = 1-img; 
%compute horizontal pdf 
xpdf = 50-sum(I0, 2); 
%compute vertical pdf 
ypdf = 50-sum(I0, 1)'; 
  
%rotate image 
I45 = 1-preprocess(imrotate(img, 45)); 
%compute horizontal pdf 
xpdf45 = 50-sum(I45, 2); 
%compute vertical pdf 
ypdf45 = 50-sum(I45, 1)'; 
  
%get square frame weights 
fw = zeros(1, 3); 
fw(1) = sum(sum(I0(20:30, 20:30))); 
fw(2) = sum(sum(I0(10:40, 10:40))) - fw(1); 
fw(3) = sum(sum(I0)) - fw(2) - fw(1); 
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%set features 
for i=1:5 
    F(i) = sum(xpdf(10*(i-1)+1:10*(i-1)+10)); 
    F(i+5) = sum(ypdf(10*(i-1)+1:10*(i-1)+10)); 
    F(i+10) = sum(xpdf45(10*(i-1)+1:10*(i-1)+10)); 
    F(i+15) = sum(ypdf45(10*(i-1)+1:10*(i-1)+10)); 
end 
F(21:23) = fw; 


