Bridges

The following 6 problems are Dr. Davis' Aug. '03 Qualifying Exam

- 1. Let f be an integer-valued function on \mathbb{R} . show that $\{x : f \text{ is not continuous at } x\}$ is a Borel set.
- 2. Let A and B be (not necessarily Lebesgue measurable) subsets of \mathbb{R} and let $| |_e$ stand for Lebesgue outer measure. Prove that if $|A|_e = 1$ and $|B|_e = 1$ and $|A \cup B|_e = 2$ the $|A \cap B|_e = 0$.
- 3. Show, with proof, F'(1) < 0, where

$$F(x) = \int_0^\infty \frac{e^{-xy}}{y^3 + 1} dy.$$

- 4. Prove that if f is a uniformly continuous function on \mathbb{R} and if $h(x) = \int_{x-1}^{x+1} f(s) ds$ then h is uniformly continuous on \mathbb{R} .
- 5. Let g(x) be a continuous function on [0,1] satisfying $g(0) = 0, g(1) \le 1$, and $g(s) \le g(t)$ if $0 \le s < t \le 1$. Put $\phi_n(x) = g(x)^n$. Prove that it f is a continuous function on [0,1], $\lim_{n\to\infty} \int_0^1 f(x) d\phi_n(x)$ exists.
- 6. Let f be a bounded Lebegue measurable function on \mathbb{R} . Put $g(x) = \sup\{a \in \mathbb{R} : |\{y : y \in (x, x + 1) \text{ and } f(y) > a\}| > 0\}$, where || is Lebesgue measure (i.e. g(x) equals the essential supremum of f over (x, x + 1)). Prove $\liminf_{x \to 0} g(x) \ge g(0)$.

The following problems were written by Dr. Davis for an exam

- 1. Let f_n be a sequence of measurable functions with $f_n \to 0$ a.e. on [a, b]. Show there exists a subsequence f_{n_j} such that $\sum_j f_{n_j}(x)$ converges a.e. in [a, b].
- 2. Fix $x_0 \in \mathbb{R}$. Show $\{(x_0, y) | y \in \mathbb{Q}\} \in \mathcal{B}$, the Borel sets on \mathbb{R}^2 .

.

3. Let K be a compact set in \mathbb{R}^n and $E \subset \mathbb{R}^n$ that is disjoint from K, (E need not be measurable). Let $|_{-}|_{e}$ denote Lebesgue outer measure, and show

$$|K \cup E|_e = |K| + |E|_e$$