ECE 662

PATTERN RECOGNITION

HW assignment 2

Question 1)

To find Wo using Fisher linear discriminant, we usually use the cost function,
W'S W
JW)= T—B,
wW's, W
The given problem is that what is the result if we set up Sw = identity matrix, and find Wo by
W, =(m —m,).

In equation 1, Sw represents scatter within classes. To answer this problem, here | presented 2
sample classes.

W, =S, (m—m,) - (1)

[Figure 1

File Edit Miew Insert Tools Deskiop Window Help A

PEE&E |eaade|«|08|(0O

8

Fig.1 2 Sample classes

To compare the effect of Sw, | calculated Wo using equation (1) and using only (m1-m2).

. Figure 1

J Figure 3
File Edit Miew Insed Tools Desktop Window Help N File Edit View Insert Tools Deskiop ‘indow Help -

DEES |aaqs (€ 08 1O DeE&| kaama|e 08|20

15

15

Fig.2 derived Wo by W, =S _~*(m, —m,) Fig.3 derived Wo by (m1-m2)

As We can see from above Fig 2.and 3, the resultant Wo direction is different. To see how two
different approaches classify well, we can check the histogram along the Wo direction.

File Edit View [nsert Tools Desktop MWindow Help

<) Figure 4
File Edit Wiew Insert Tools Desktop Window Help

eS| kaama Y| 0E| 0O

DeEdE| a8 (@ 0B 0O

70

60

50

40+

30r

20¢

E]B[] -50 -40 -30 -20 -10 0 10 20 30
x10° IY\
Fig.3 Histogram of Projected onto Wo Fig.4 Histogram of Projected onto Wo

by W, =S, (m,—m,) by (m1-m2)

As you can see form Fig 3 and 4, the resultant Wo derived using W, = Sw_l(m1 —m,) can divide two

classes better than the other method. We can easily check that there exists more overlapping region
in Fig 4. If we setup Sw = ldendity matrix, we came to consider only scatter between classes, and find
Wo only by using the distance between sample means. In some cases (like this example), this can
lead to unreasonable result. We can check from Fig3, that the resultant Wo direction slant to the
direction maximizing only the difference between 2 sample means, and this direction also increase the
scatter within classes.

Question 2)

To answer the given question 2 (also for Question 3), | downloaded sample data and Package for
support vector machine and neural network from website. The following is information about dataset
and program package | used.

Data Description

- Webpage : http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#ala
- # of dimension(feature) : 123

- #of training data : 1605

- # of testing data : 30956

- #of classes : 2(binary), each class identified as -1/+1.

Package Description
- LIBSVM(A Library for Support Vector Machine) : http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- FANN(Fast Artificial Neural Network) : http://leenissen.dk/fann/

Question 2-a) Neural Network classifier

- The following is the process for this problem.
B Download and compilation of source code(FANN libraries).
B Creation of simple C programs for training and classifying data(train / fann_predict).
B Trains training data.
B Classification and accuracy report.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a1a
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://leenissen.dk/fann/

- | performed various experiments using different input parameters.
- The following table summarized the various parameters | used for this problem.

f#of # of hidden neurons Desired errors Maximum Accuracy
layers epoch number

3 10 0.001 1000 78.7278%

3 100 0.001 1000 79.4288%

3 100 0.001 3000 79.2608%

- As you can see from the above table, when we applied different parameters for Neural Network
classifier, there was no significant change of classification accuracy.

Question 2-b) Support Vector Machine

- The following is the process for this problem.
B Download and compilation of source code(LIBSVM).
B Determination of parameters (C and r)
B Training and classification using default and derived parameters.
- | used python script “easy.py to find optimal parameters C and r and test

Scaling training data...
Cross validation...
Warning: empty z range [81.8069:81.8069], adjusting to [80.9888:82.625]
Notice: Cannot contour non grid data. Please use "set dgrid3d".
Warning: empty z range [81.8069:81.8069], adjusting to [80.9888:82.625]
Notice: Cannot contour non grid data. Please use "set dgrid3d".
Best ¢c=8192.0, g=3.0517578125e-05 CV rate=83.8006
Training...
Output model: ala.train.model
Scaling testing data...
Testing...
Accuracy = 83.8287% (25950/30956) (classification)

- Using derived parameters(C = 8192.0 and g = 3.05175), the resultant classification accuracy was
83.8287%
- lalso applied default parameters to train and classify data.
optimization finished, #iter = 495
4
nu = 0.460268
obj =-673.031393, rho = -0.628569
nSV = 754, nBSV =722
Total NSV = 754
Accuracy = 83.5864% (25875/30956) (classification)

- With default parameters, the resultant classification accuracy was slightly less than derived
optimal parameters.

Question 2-c) Comparison between Support Vector Machine & Artificial Neural Network.

From above experiment, | found the following information.

- Support Vector Machine produced slightly better classification accuracy than ANN approach.

Question 3-b) Classifier using K-nearest neighbor

- The following is process for this problem.

Data format conversion from the LIBSM sample data into matrix format using Matlab.
Implementation K-nearest neighbor

Experiments using the given training and sample dataset

Experiments using different K-values.

I # of correctly classified data out of
K Classification Accuracy 30956
2 80.2719 % 24849
3 80.6693 % 24972
4 81.1183 % 25111
5 81.6987 % 25291

- As you can see from the above table, we can easily recognize that the accuracy of KNN classifier
increases as K values increases. | attached Matlab code for K-nearest neighbor.

Question 3-c) Classifier using nearest neighbor

For the experiment of nearest neighbor classifier, | just could use same process and same code as K-
nearest neighbor, because that nearest neighbor is the special case(K = 1) of K-nearest neighbor. As
you can see from below table, the resultant classification accuracy is less than K-nearest neighbor
applied using K=2.

of correctly classified data out of

K Classification Accuracy 30956

1 78.4339 % 24280

Question 3-d) Comparison between 3 different approaches

From above experiment, | found the following information.

- The classification accuracy increased as K values increased, as | expected.

- The overall time for classification also slightly increased as K values increased.

- The nearest neighbor classifier is the special case for K nearest neighbor(K=1), and leaded to the
lower classification accuracy than K nearest neighbor using K=2.

%
% ECE 662 - Pattern Recognition

% Homework #2, Prob #1

% Desc : Implementatio & analysis of Fisher Linear
% Discriminant

% KKk *kk
clear all; clc; format long g;

% numbrt of samples
nSample = 1000;

%
% case 1

% 1. 2 classes having same variance
% 1. apply Sw =1 and Sw !=1

%

% creation of 2 classes based on normal distribution
%mul = [0; 0]; covl =[10; 0 1];

mul =[0; 0]; covl=[50;01];

w1l = mvnrnd(mul,covl,nSample);

%mu2 = [6; 3]; cov2 =[10; 0 1];
mu2 = [4; 3]; cov2 =[5 0; 0 1];
w2 = mvnrnd(mu2,cov2,nSample);

% Calculation of w0 for Fisher Linear Discriminant
S1 = zeros(2,2); S2 = zeros(2,2);
Sw = zeros(2,2);
for i=1:nSample
S1=S1+ (wl(i,:)' - mul)*(wl(i,:)' - mul);
S2 = S2 + (W2(i,:)' - mu2)*(w2(i,})' - mu2);
end
Sw=S1+S2;

% Calculation of w0 (Sw !=1)
wO0_1 = inv(Sw)*(mul-mu2);

% Calculation of w0 (Sw = 1)
wO0_2 = (mul-mu2);

% Projection into Line using w0_1
plot(w1(:,1),w1(:,2),r™");

hold on; plot(w2(:,1),w2(:,2),'b*);
% Draw w0 _1 line

wx1 = linspace(-10,15,100);

wyl =wx1 *w0_1(2,1)/w0_1(1,1);
plot(wx1,wy1);

axis equal;

axis([-10 15 -10 15));
yl=w0_1"*w1l’

figure,hist(y1,50);

y2 = w0_1"*w2'

hold on, hist(y2,50);

% Projection into Line using wO_2
figure,plot(wl(:,1),w1(:,2),r*?;
hold on; plot(w2(:,1),w2(:,2),' b*);
% Draw w0_2 line

wx2 = linspace(-10,15,100);

wy2 =wx2 * w0_2(2,1)/w0_2(1,1);
plot(wx2,wy?2);

axis equal;

axis([-10 15 -10 15));

y3 =w0_2"*wl";

figure,hist(y3,50);
y4 = w0_2"*w2";
hold on, hist(y4,50);

%
% ECE 662 - Pattern Recognition
% Homework #2, Prob #3

% Desc : Implementation of KNN
%
clear all; clc; format long g;
nSample = 1605;
nTSample = 30956;

% nTSample = 1605;
nDim = 123;

% load training data & test data
fidl = fopen('D:\Working\ala.trn’);
fid2 = fopen('D:\Working\ala.tst');

% initialization of matrix for input training & test data
trSample = zeros(nSample, nDim);
tsSample = zeros(nTSample, nDim);

% initialization of matrix for class
trLabel = zeros(nSample,1);
tsLabel = zeros(nTSample,1);

% make training sample matrix from the given LIBSVM sample data set
for i=1:nSample
line = fgets(fid1);
% set up class
class = str2double(line(1:2));
trLabel(i,1) = class;
idx = findstr(line,"");
for j=1:size(idx,2)
if(line(idx(j)-1) ~= "' && line(idx(j)-2) =="")
tmp = str2double(line(idx(j)-1:idx(j)-1));
trSample(i,tmp) = 1;
elseif(line(idx(j)-2) ~= "' && line(idx(j)-3) =="")
tmp = str2double(line(idx(j)-2:idx(j)-1));
trSample(i,tmp) = 1;
elseif(line(idx(j)-3) ~= "' && line(idx(j)-4) =="")
tmp = str2double(line(idx(j)-3:idx(j)-1));
trSample(i,tmp) = 1;
end
end
end

% make test sample matrix from the given LIBSVM sample data set
for i=1:nTSample
line = fgets(fid2);
% set up class
class = str2double(line(1:2));
tsLabel(i,1) = class;
idx = findstr(line,"";
for j=1:size(idx,2)
if(line(idx(j)-1) ~=""' && line(idx(j)-2) =="")
tmp = str2double(line(idx(j)-1:idx(j)-1));
tsSample(i,tmp) = 1;
elseif(line(idx(j)-2) ~= "' && line(idx(j)-3) =="")
tmp = str2double(line(idx(j)-2:idx(j)-1));

tsSample(i,tmp) = 1;
elseif(line(idx(j)-3) ~= "' && line(idx(j)-4) =="")
tmp = str2double(line(idx(j)-3:idx(j)-1));
tsSample(i,tmp) = 1;
end
end
end

% Call K-nearest neighbor(K=1->nearest neighbir) function
classM = wkKnn(trSample',trLabel',tsSample’,3);

% accuracy test
nCorrect = 0;
for i=1:nTSample
if((tsLabel(i,1)-classM(1,i)) == 0)
nCorrect = nCorrect + 1;
end
end

disp(nCorrect/nTSample * 100);

fclose(fidl);
fclose(fid2);

%
% Train.c for FANN
%

#include <stdio.h>
#include <stdlib.h>
#include "fann.h"

int main(int argc, char *argv[])
{
/* Syntax: train trainFile outFile numIinput numOutput numLayers
numNeuronsHidden desiredError maxEpoch epochBetweenReport */
unsigned int num_input = atoi(argv[3]);
unsigned int num_output = atoi(argv[4]);
unsigned int num_layers = atoi(argv[5]);
unsigned int num_neurons_hidden = atoi(argv[6]);
float desired_error = atof(argv[7]);
unsigned int max_epochs = atoi(argv[8]);
unsigned int epochs_between_reports = atoi(argv[9]);

struct fann *ann = fann_create_standard(num_layers, num_input, num_neurons_hidden, num_output);

fann_set_activation_function_hidden(ann, FANN_SIGMOID_SYMMETRIC);
fann_set_activation_function_output(ann, FANN_SIGMOID_SYMMETRIC);

fann_train_on_file(ann, argv[1], max_epochs, epochs_between_reports, desired_error);

fann_save(ann, argv[2));
fann_destroy(ann);

return O;

}

%
% fann_predict.c for FANN
%

/*

** fann_predict.c

%

** Made by (Jinha Jung)

** Login <jinha@)jinha-laptop.ecn.purdue.edu>

*%

** Started on Thu Mar 27 17:30:56 2008 Jinha Jung
** | ast update Sun May 12 01:17:25 2002 Speed Blue
*

#include <stdio.h>
#include <stdlib.h>
#include "floatfann.h"

/* Syntax
fann_predict testFile netFile */
int main(int argc, char *argv[])
{
int lengthTestData;
int numCorrect = 0;

int class;

float temp;

inti;

fann_type *calc_out;

/* Create FANN structure */
struct fann *ann = fann_create_from_file(argv[2]);
struct fann_train_data *testData = fann_read_train_from_file(argv[1]);

lengthTestData = fann_length_train_data(testData);
[lprintf("Length of Test data = %d\n", lengthTestData);

for (i = 0; i < lengthTestData; i++) {
* Initialize the result class */
class = 0;
[* Go through fann */
calc_out = fann_run(ann, testData->input]i]);
[* If result is positive class = 1, otherwise class=-1 */
if (calc_out[0] > 0) {

class = 1;
}else {
class =-1;

}

[lprintf("%d data is classified to %d\n", i, class);

[* Check whether it is correctly classified */
if (class == testData->output][i][0]) {
numcCorrect = numCorrect + 1,
[lprintf ("Number of correct = %d\n", numCorrect);
}
}

printf("Testing finished.\n");

printf("Number of test data = %d\n", lengthTestData);

printf("Number of correctly classified data = %d\n", numCorrect);

printf("Accuracy = %f percent\n”,
(float)numCorrect/(float)lengthTestData*100);

fann_destroy_train(testData);
fann_destroy(ann);

return O;

