1. Let A and B be nonempty subsets of \mathbb{R}. Define $A+B=\{a+b: a \in$ $A, b \in B\}$. Show $\sup (A+B)=\sup A+\sup B$.
2. Let $A \subset \mathbb{R}$ with $\emptyset \neq A$. Set $-A=\{-a: a \in A\}$ and show $-\sup A=$ $\inf (-A)$.
3. Let $A \subset \mathbb{R}$ with $\emptyset \neq A$. Set $\alpha=\sup A$ and suppose $\alpha<\infty$. Also suppose there exists a $\delta>0$ such that for all distinct a and b in A we have $|a-b| \geq \delta$. Show $\alpha \in A$.
4. Let $A \subset \mathbb{R}$ with $\emptyset \neq A$ and A bounded. Fix $x, y \in \mathbb{R}$. Set $T=\{a x+y$: $a \in A\}$ and find $\sup T$.
