Problem set 5

David Imberti

October 2, 2008

Number 1 runs similarly to the construction of $\sup (A B)=\sup (A) \sup (B)$, and there is a talk on number 3 today. So, I really only see number 2 as being fortuitious to somewhat do:
2) Does $\sup E=\lim _{n \rightarrow \infty} \sup _{k \geq n} a_{k}$ where E is the set of all limit points of a_{k} ?
\qquad

Lemma
$\forall \epsilon>0, \exists N \ni \forall n \geq N a_{n} \leq \sup E+\epsilon$

Pf:

BWOC assume $\exists \epsilon>0 \ni \forall n, a_{n}>\sup E+\epsilon$, but then this contradicts the definition of the sup E being the greatest upper bound of the set of limit points of a_{n}.

Let $s_{n}=\sup _{k \geq n} a_{k}$, we show that $\lim _{\infty \rightarrow \infty} s_{n}=\sup E$, note that this is equivalent to what we need to show.

Furthermore, we know that s_{n} is monotonically decreasing by Bobby problem set 2.3.a, also by the lemma it is the great lower bound of s_{n}. Thus by a proof mutatis mutandis to 3.14 we have that $\lim _{n \rightarrow \infty} s_{n}=\sup E$.

Thus $\sup E=\lim _{n \rightarrow \infty} \sup _{k \geq n} a_{k}$, which is what we were trying to show.
\square

