Problem set 5

David Imberti

October 2, 2008

Number 1 runs similarly to the construction of $\sup(AB) = \sup(A) \sup(B)$, and there is a talk on number 3 today. So, I really only see number 2 as being fortuitious to somewhat do:

2) Does $\sup E = \lim_{n \to \infty} \sup_{k \ge n} a_k$ where E is the set of all limit points of a_k ?

Lemma

 $\forall \epsilon > 0, \exists N \ni \forall n \ge Na_n \le \sup E + \epsilon$

Pf:

BWOC assume $\exists \epsilon > 0 \ni \forall n, a_n > \sup E + \epsilon$, but then this contradicts the definition of the sup E being the greatest upper bound of the set of limit points of a_n .

Let $s_n = \sup_{k \ge n} a_k$, we show that $\lim_{\infty \to \infty} s_n = \sup E$, note that this is equivalent to what we need to show.

Furthermore, we know that s_n is monotonically decreasing by Bobby problem set 2.3.a, also by the lemma it is the great lower bound of s_n . Thus by a proof mutatis mutandis to 3.14 we have that $\lim_{n\to\infty} s_n = \sup E$.

Thus $\sup E = \lim_{n \to \infty} \sup_{k \ge n} a_k$, which is what we were trying to show.