MA 453 - Elements Of Algebra I

January 29, 2009

Professor Uli Walther

January 13, 2008

By the end of the course, we will be given answers to the following:

1. Is it possible to write down explicit formulas to determine the roots of a polynomial (e.g. $c_n x^n + c_{n-1} x^{n-1} + \ldots + c_o$) in the terms of the coefficients c_n, \ldots, c_o in the same way as the roots of the quadratic equation as given by (allowed operations are $+, -, \div, \times, \star$),

$$r_{1,2} = -\frac{c_1}{2c_2} \pm \sqrt{\frac{c_1^2}{4c_2^2} - \frac{c_o}{c_2}}$$

- 2. (Dido's Problem) Given a ruler, compass, and a cube of volume 1, can you construct a cube of twice the volume? (Given a line segment of length 1, can you construct a line segment of length $\sqrt{2}$)
- 3. With ruler and compass, can you disect arbitrary angles?

Math Symbols:

Symbol	
N	naturals - 0,1,2
Z	, -3, -2, -1, 0, 1, 2, 3,
Q	rationals $\left\{ \frac{p}{q} p, q \in \mathbb{Z}, q \neq 0 \right\}$
\mathbb{R}	reals
\mathbb{C}	complex numbers

In order to write math "sentences," we use the following logic symbols,

Symbol	
∈	"is element of"
\subseteq	"is subset of"
E	"there exists"
A	"for all"

For example, $\forall n \in \mathbb{N} \exists m \in \mathbb{N} | m = n + 1$, for all natural n, there exists a real number m, such that m = n + 1.

Theorem Archimedian Property

If $n \in \mathbb{N}$, $m \in \mathbb{N}$ with $n \neq 0$, then $\exists q \in \mathbb{N}$ with $n \cdot q > m$.

Theorem Well-Ordering

If you take any non-empty subset S of N, then S has a minimal element. (Contrast: \mathbb{Z} has no such minimum).

Example Proof that $\sqrt{2}$ is not rational.

If $\sqrt{2}$ were rational, then $\sqrt{2} = \frac{p}{q}$ where $p, q \in \mathbb{N}$ and $q \neq 0$. $\frac{p^2}{q^2} = 2 \Rightarrow p^2 = 2q^2$. p must be even, p = 2p'. Plugging in, $(2p')^2 = 2q^2$ or $2(p')^2 = q^2$. Thus $q = 2q', 2(p')^2 = (2q')^2$, or $(p')^2 = 2(q')^2$, or $\frac{p'}{q'} = \sqrt{2}$. Assuming rationality, p must exist and must be minimal. If such a p exists, however, p would not be minimal. Contradiction shows that p does not exist.

Theorem Euclid

Given $a, b \in \mathbb{Z}$, $\exists q, r \in \mathbb{Z}$ with a = qb + r with $0 \leq r < |b|$.

Example $a = 7, b = 2; 7 = 3 \cdot 2 + 1.$ $a = -4, b = 3, -4 = (-2) \cdot 3 + 2.$

Definition Given $a, b \in \mathbb{Z}$, there are natural numbers $l = \operatorname{lcd}(a, b), g = \operatorname{gcd}(a, b)$ where $\operatorname{gcd}(a, b) = \max \{n \in \mathbb{N} | n \text{ divides } a \text{ and } b\}, \operatorname{lcm}(a, b) = \max \{n \in \mathbb{N} | a \text{ divides } n \text{ and } b \text{ divides } n\}.$

Euclidian Algorithm For gcd (a, b). Initialize: $a_o = a, b_o = b$. Iteration: Write $a_i = q_i \cdot b_i + r_i$ with $q_i, r_i \in \mathbb{Z}$ and $0 \le r_i < |b_i|$. Reset: $a_{i+1} = b_i$, $b_{i+1} = r_i$ until $r_i = 0$. When $r_i = 0$, gcd $(a, b) = b_i$.

Example $a = 47, b = 65; a_o = 65, b_o = 65$. I1: $47 = 0 \cdot 65 + 47, a_1 = 65, b_1 = 47$. I2: $65 = 1 \cdot 47 + 18, a_2 = 47, b_2 = 18$. I3: $47 = 2 \cdot 18 + 11, a_3 = 18, b_3 = 11$. I4: $18 = 1 \cdot 11 + 7, a_4 = 11, b_4 = 7$. I5: $11 = 1 \cdot 7 + 4, a_5 = 7, b_5 = 4$. I6: $7 = 1 \cdot 4 + 3, a_6 = 4, b_6 = 3$. I7: $4 = 1 \cdot 3 + 1, a_7 = 3, b_7 = 1$. I8: $3 = 3 \cdot 1 + 0$ END.

Note if $a, b \in \mathbb{N}$, not zero,

$$\operatorname{lcm}(a,b) = \frac{a \cdot b}{\operatorname{gcd}(a,b)}$$

To illustrate, $a = 2^0 \cdot 3^2 \cdot 5^1 = 45$, $b = 2^4 \cdot 3^1 \cdot 5^0 = 48$. We claim that $lcm(a, b) \cdot gcd(a, b) = a \cdot b$.

$$\left(2^{\max(0,4)} \cdot 3^{\max(2,1)} \cdot 5^{\max(1,0)}\right) \left(2^{\min(0,4)} \cdot 3^{\min(2,1)} \cdot 5^{\min(1,0)}\right) = a \cdot b$$

This only works for two numbers. If we try to apply this to some a, b, and c we will be sadly disappointed.

Definition We say that a number $n \in \mathbb{N}$ is irreducible if an equation $a \cdot b = n$ (with $a, b \in \mathbb{N}$), either a = 1 or b = 1. We say that n is **prime** if "n divides $a \cdot b$ " only happens if n|a or n|b

Fact Within the integers, "prime" and "irreducible" are the same.

Proof Prime \Rightarrow irreducible. Let *n* be prime, and assume that $a \cdot b = n$, $(a, b \in \mathbb{N})$. Then n|ab and as *n* prime, n|a or n|b. If n|a, a = qn. So n = ab = qbn, so $qb = 1 \Rightarrow q, b = 1$. Similarly, $n|b \Rightarrow a = 1$.

Corollary of Euclid If a > b, $gcd(a, b) = gcd(b, a - b) = \dots$ So, gcd(a, b) is a linear combination of a, b : gcd(a, b) = xa + yb with $x, y \in \mathbb{Z}$.

January 15, 2008

Theorem gcd (a, b) is a linear combination of a and b: gcd (a, b) = ax + by where x and y are integers (because of Euclidian Alogrith).

So let p be irreducible and suppose $p|a \cdot b$. Need to sho: p|a or p|b. Suppose p does not divide a, then gcd (p, a) is not p, hence 1 as p is irreducible. So,

$$1 = x \cdot p + y \cdot a$$

with $x, y \in \mathbb{Z}$. So,

 $b \cdot 1 = x \cdot b \cdot p + y \cdot a \cdot b$

This says that p divides the RHS, so p|b. Similarly, if p does not divide b, then p|a.

Fermat's Last Theorem It is not possible to obtain $a^n = b^n + c^n$ for a, b, c > 0 and n > 2.

Modular Arithmetic is a system of arithmetic for integers, where numbers "wrap around" after they reach a certain value — the modulus. The basic idea is to choose an integer $n \in \mathbb{Z}$ and equate it with 0. Let's say that n = 12. "Survivors" are 0,1,...,11 in some sense.

Definition " \mathbb{Z} modulo $n \mathbb{Z}$ " Let $n \in \mathbb{Z}$ then let $\mathbb{Z}/n\mathbb{Z}$ stand for the *n* families of numbers {..., $-n, 0, n, 2n, \ldots$ }, {..., $-n + 1, 1, n + 1, 2n + 1, \ldots$ }, {..., $-n - 1, -1, n - 1, 2n - 1, \ldots$ }.

Theorem Things in $\mathbb{Z}/n\mathbb{Z}$ can be added, subtracted, multiplied, and (in lucky cases) divided.

Example n = 2. We have 2 families in $\mathbb{Z}/2\mathbb{Z}$, $\{\ldots, -2, 0, 2, 4, \ldots\} \rightarrow 0 + 2\mathbb{Z}$, $\{\ldots, -3, -1, 1, 3, 5, \ldots\} \rightarrow 1 + 2\mathbb{Z}$. One will note that there are an infinite representations of these two families. In adding the families together,

+	$0+2\mathbb{Z}$	$1+2\mathbb{Z}$
$0+2\mathbb{Z}$	$0+2\mathbb{Z}$	$1+2\mathbb{Z}$
$1+2\mathbb{Z}$	$1+2\mathbb{Z}$	$0+2\mathbb{Z}$

Multiplying,

×	$0+2\mathbb{Z}$	$1+2\mathbb{Z}$
$0+2\mathbb{Z}$	$0+2\mathbb{Z}$	$0+2\mathbb{Z}$
$1+2\mathbb{Z}$	$0+2\mathbb{Z}$	

Fact Addition, subtraction, multiplication in $\mathbb{Z}/n\mathbb{Z}$ can be done by "representatives":

$$(a+n\mathbb{Z}) + (b+n\mathbb{Z}) = (a+b) + n\mathbb{Z}$$

then,

$$a' + b' = a + kn + b + ln$$
$$a' + b' = (a + b) + n \cdot (k + l)$$

Similarly for multiplication,

$$(a+n\mathbb{Z})\cdot(b+n\mathbb{Z}) = (ab)+n\mathbb{Z}$$

where $(a + n\mathbb{Z})$ is referred to as the "coset of a."

Example Is a = 743126882431 divisible by 9? Note that a is divisible 9 if and only if $a + 9\mathbb{Z} = 0 + 9\mathbb{Z}$. What is a?

$$a = 1 \cdot 10^0 + 3 \cdot 10^1 + 4 \cdot 10^2 + \ldots + 7 \cdot 10^{11}$$

 $10 \equiv 1$, mod 9. So, $100 \equiv 10 \cdot 10 \equiv 1 \cdot 1 = 1$ and $10^k = 10^{k-1} \cdot 10 \equiv 1 \cdot 1 = 1$. Note that we call " \equiv " congruent. So,

$$a \equiv 1 \cdot 1 + 3 \cdot 1 + 4 \cdot 1 + \ldots + 7 \cdot 1$$

a = 49 which is the class 4. So the class/coset of a is the class of 4, not the class of 0 which is the condition that needs to be met to be divisible by 9. Therefore, 9 does not divide a.

Fact An integer is divisible by 9 if and only if the sum of its digits in decimal expansion expansion is divisible by 9.

a is divisible by 11 if and only if the alternating sum of the digits is divisible by 11.

Example Divisibility by 7. $10^0 = 1 \equiv 1$, $10^1 = 10 \equiv 3$, $10^2 = 100 \equiv 2$, $10^3 \equiv 6$, $10^4 \equiv 4$, $10^5 \equiv 5$, $10^6 \equiv 1$. So, for example, if I take 7144285019 $\equiv 3$.

GROUPS

Definition A group G is a set with an operation \star such that 1.) $a \star b$ is in G, 2.) $a \star (b \star c) = (a \star b) \star c$ (associativity), 3.) there is a special element 1_G for which $a \star 1_G = a$ and $a = 1_G \star a$ (identity), 4.) for all $a \in G$ there is an "inverse" b such that $a \star b = 1_G = b \star a$ (of course as a changes so does b).

January 20, 2009

Note that in most discussion, \star is merely a placeholder for an operation. In many examples, the star will be replaced with a real arithmetic operation. Recall that (G, \star) is a group if and only if

- G is a set with a binary operation $\star : G \star G \to G$
- slt (ab) c = a (bc)
- $\exists 1_G \in G$ with $1_G \cdot g = g \cdot 1_G = g \forall g$
- $\forall g \in G \exists g^{-1}$ with $gg^{-1} = 1$

Examples

• $(\mathbb{Z}, +)$; know: a + (b + c) = (a + b) + c, identity = 0, inverse = negative.

- $(\mathbb{Z}/n,+); \mathbb{Z}/n = \{0+n\mathbb{Z}, 1+n\mathbb{Z}, \dots, (n-1)+n\mathbb{Z}\}, \text{ where } i+n\mathbb{Z} = \{\dots, i-2n, i-n, i, i+n, i+2n, \dots\}$ and $(a+n\mathbb{Z}) + (b+n\mathbb{Z}) = (a+b)+n\mathbb{Z}.$
- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ with +; identity = 0; inverse = negative
- $(\mathbb{Q}\setminus\{0\}, \times)$; we know a(bc) = (ab)c; identity = 1; inverse = inverse (note: $a \neq 0, b \neq 0 \Rightarrow ab \neq 0$).
- Similarly, $(\mathbb{R} \setminus \{0\}, \times), (\mathbb{C} \setminus \{0\}, \times)$
- Let G be a group such as (Z, +), (Q, +), (R, +), (C, +). Let G^{m,n} be the m×n matrices with entries in G. (G^{m,n}, +) is a group. Identity = m×n matrix of zeros; inverse = matrix with "negatived" entries.
- Let $GL(n, \mathbb{Q}) = n \times n$ matrices with rational entries, with matrix multiplication as operation, and with det $\neq 0$. We know that A(BC) = (AB)C; identity = indentity matrix; inverse = matrix inverse
- Symmetry groups: Consider an equilateral triangle with vertices a, b, c.

Let's consider the collection of all rigid motions that transform the triangle into itself. These are: [1] 2 rotations by 120° , l and r, [2] not doing anything, call it 1, [3] 3 flips, where each flips fixes one of the corners a, b, or c and flips the triangle on the axis drawn from the triangle vertex perpendicular to the opposing side. Together they form symmetry sym (Δ) = {1, l, r, a, b, c}. This is all of the possibilities, because 3! = 6. We make this a group by composing motions.

Multiplication table for sym (\triangle), where the i - j entry $= i \star j$:

	1	r	1	a	b	С
1	1	r	l	a	b	С
r	r	l	1	b	c	a
1	l	1	r	c	a	b
а	a	c	b	1	l	r
b	b	a	c	r	1	l
С	с	b	a	l	r	1

Note that in each row and each column, each element shows exactly once. Why? In any column we are looking at products of the form $g \times g_o$, where g_o is the column index and g runs through the group. What this means is that g_o represents the column and g represents the row.

Suppose that some element x does not show in this column. This means that some other element shows at least twice. What this tells us is for some g_o and two different g I get the same result, call it y. $gg_o = y \Rightarrow g(g_og_o^{-1}) = yg_o^{-1}$, or $g = yg_o^{-1}$, similarly $g' = yg_o^{-1}$. We can conclude then that g = g' and thus nothing can be repeated, and nothing is missing. Note that in many cases,

$$g \times g' \neq g' \times g$$

Multiplication tables are symmetric if and only if gg' = g'g in all cases.

Definition (G, \times) is *Abelian* (commutative) if the multiplication table is symmetric (means: you can reorder factors in a product.)

Abelian \mathbb{Z} , \mathbb{R} , \mathbb{C} ; vector spaces, $(G^{m,n}, +)$ where $G = \mathbb{Z}$, \mathbb{Q} , \mathbb{R} , \mathbb{C} ; $(\mathbb{Z}/n\mathbb{Z}, +)$ **Non-Abelian** sym (\triangle) ; most symmetry groups; $G|(\mathbb{Q}, n)$ and $G|(\mathbb{R}, n)$, $Gl(\mathbb{C}, n)$.

Case study on inverting mod(n). Zeros are not admissable!

n = 2: $1 + 2\mathbb{Z} = \text{odd numbers.}$

Question Can we make $\{1 + 2\mathbb{Z}\}$ at multiplicative group? Yes.

	1
1	1

 $n = 3: 1 + 3\mathbb{Z}; 2 + 3\mathbb{Z}$

	1	2
1	1	2
2	2	1

n = 4: $\bar{1} = 1 + 4\mathbb{Z}, \bar{2}, \bar{3}, \bar{4}$

	1	2	3
1	1	-	3
2	-	-	-
3	3	-	1

In general, starting with $\mathbb{Z}/n\mathbb{Z}$, remove $\overline{0}$ and all cosets of numbers that have a common gcd with n. If we do this, we are left with a set called U(u) or $(\mathbb{Z}/n\mathbb{Z})^{\times}$ (the "units mod n"). Why do they make a group?

- If gcd(a, n) = gcd(b, n) = 1, then $gcd(a \star b, n) = 1$. So $U(u) \cdot U(n) \subseteq U(n)$.
- Associativity follows from Z group.
- Identity: $1 + n\mathbb{Z}$
- Inverse: assuming gcd(a, n) = 1 we need a b with gcd(b, n) = 1 and $\bar{a} \cdot \bar{b} = \bar{1}$.

Recall Euclidian algorithm and its consequence,

$$gcd(\alpha,\beta) = x\alpha + y\beta$$

with $x, y \in \mathbb{Z}$. So, 1 = xa + yn; thus $\overline{x}\overline{a} = \overline{1} - \overline{yn}$, $\overline{x} = \overline{a}^{-1}$ and $\overline{yn} = \overline{0}$.

January 22, 2009

PERMUTATIONS

Definition Given n labelled objects such as $\{1, \ldots, n\}$, a permutation (on n elements) is an ordering of these n objects.

Note There are $n! = n(n-1)(n-2)...2 \cdot 1$ such permutations. The ways of writing permutations: standard notation (5,4,1,2,3) or []; cycle notation (1,5,3)(2,4)

Note Irredundant cycle notation if and only if each number/object occurs precisely once. Redundant if not irredundant.

Example What is the composition of permutations from right to left of (1, 2, 3)?

$$(1,2,3) \xrightarrow{(1,3)} (3,2,1) \xrightarrow{(1,2)} (2,3,1)$$

This operation is written as (12) (13). The order of a permutation. Suppose we fix one permutation $(1,4,5)(2,3) = \sigma$. After two executions of this permutation, we have (1,4,5)(2,3)(1,4,5)(2,3) = (1,5,4)

Definition The order of a permutation σ is the smallest number ord $(\sigma) \geq 1$ such that $\operatorname{ord}(\sigma)$ iterations of σ combine to the identity permutation.

Example $\operatorname{ord}((1, 4, 5)(2, 3)) = 6.$

Theorem Suppose σ is given in irredundant cycle notation, $\sigma = c_1 \cdot c_2 \cdot \ldots \cdot c_k$. Let l_i be the length of cycle c_i . Then $\operatorname{ord}(\sigma) = \operatorname{lcm}(l_1, \ldots, l_k)$.

Remark Book says "disjoint cycle notation" for "irredundant cycle notation." **Definition** A **transposition** is a 2-cycle.

Theorem Any permutation can be achieved by a composition of 2-cycles (not disjoint usually).

Proof We need to show that any cycle is a composition of 2-cycles. Use induction: let l be the length of the cycle. (a) = (l, a) (l, a), so l = 1. For l = 2, there is nothing to do. For l > 2:

$$(a_1, a_2, a_3, \dots, a_l) = (a_1, a_3, a_4, \dots, a_l) (a_1, a_2)$$

Question Given σ , how many 2-cycles can be used to write σ as their product? This is a bad question because $\sigma = \sigma(1, 2)(1, 2) \cdots$. A better question would be, can we say anything about the number of 2-cycles used to produce σ ?

Definition The **disorder** of σ is the number of pairs $\{i, j\}$ with $1 \leq i < j \leq n$, such that $\sigma(i) > \sigma(j)$.

Example If $\sigma(1, 2, 3, 4, 5) = 2, 4, 5, 1, 3$. $\sigma(1) = 2, \sigma(2) = 4, \sigma(3) = 5, \sigma(4) = 1, \sigma(5) = 3$.

Pair	In order after σ ?			
1,2	yes			
1,3	yes			
1,4	no			
1,5	yes			
2,3	yes			
2,4	no			
2,5	no			
3,4	no			
3,5	no			
4,5	yes			

Definition σ is *odd* (-1) if its disorder is odd, and *even* (+1) if its disorder is even. The "parity" of σ .

Note Any 2-cycle is odd. For the order 1 2 3...i...j...n permutes to 1 2...j...i...n. Who is out of order? Even: all pairs of numbers (a, i) with i < a < j; all pairs of numbers (a, j) with i < a < j. The collection of all permutations falls into even and odd choices. Every 2-cycle is odd.

Fact Suppose you compose 2 permutations σ and τ . The parity of the product behaves as follows,

	σ odd (-1)	σ even (+1)
τ odd (-1)	even (+1)	odd (-1)
τ even (1)	odd (-1)	even (+1)

"Parity is a homomorphism, it respects products." In particular, the number of even and odd permutations is the same. Taking any permutation and composing it with two $\bullet(1, 2)$ yields identity.

Definition The collection of all permutations of n elements is called the symmetric group S_n .

January 27, 2009

SUBGROUPS

Suppose that (G, \star) is a group, we want to study the existence and structure of subsets of G that are groups in their own right.

	1	r	l	a	b	c
1	1	r	l	a	b	c
r	r	l	1	b	с	a
l	l	1	r	c	a	b
a	a	c	b	1	l	r
b	b	a	с	r	1	l
c	c	b	a	l	r	1

Find the sym(\triangle). Recall that to be a group, the following conditions must be met:

- $H \star H \subseteq H$
- Associative
- *H* should contain 1
- for $h \in H$, H should contain h^{-1}

Subgroups

- {1}
- $\{1, a, b, c, l, r\}$
- $\{1, l, r\}$
- $\{1, a\}, \{1, b\}, \{1, c\}$
- $\{1, a, b, l, c, r\}$

To find the sym(\triangle): {1}, G, {1, l, r}, {1, a}, {1, b}, {1, c}

Definition A group G is called cyclic if it can be viewed as the collection of all powers of a single element g.

Example Which groups are cyclic? $\{1\} = \langle 1 \rangle$, $\{1, a\} = \langle a \rangle$, $\{1, b\} = \langle b \rangle$, $\{1, c\} = \langle c \rangle$, $\{1, l, r\} = \langle l \rangle = \langle r \rangle$. On the other hand, we conclude that G is not cyclic. G needs 2 generators for example a and b.

Lemma If $g \in (G, \star)$, then its $\langle g \rangle$ powers for a subgroup.

Proof Notation: let $g^k = g \cdot \ldots \cdot g$. We need to show that [1] $\langle g \rangle$ is closed under \times , [2] $1 \in \langle g \rangle$, and [3] each element of $\langle g \rangle$ has an inverse in $\langle g \rangle$. To [1] $g^k \cdot g^l = g^{k+l}$, [2] take $g^0 = 1$, and [3] the inverse to g^k is g^{-k} . Note that $q^{-k} = (q^{-1})^k$.

Example $(G, \star) = (\mathbb{Z}, +). \langle 2 \rangle = \{\dots, -4, -2, 0, 2, \dots\}.$

Recall $\operatorname{ord}(g) = \operatorname{smallest} positive k$, such that $g^k = 1$. If no such k exists, then $\operatorname{ord}(g) = \infty$.

Example sym(\triangle), ord(a) = 1, ord(l) = 3, ord(1) = 1, in (\mathbb{Z} , +), ord(2) = ∞ .

Lemma Suppose $\operatorname{ord}(g) < \infty$, then $\{k \in \mathbb{Z} | g^k = 1\} = \mathbb{Z} \cdot \operatorname{ord}(g)$.

Example In sym(\triangle), $\{k \in \mathbb{Z} | l^k = 1\} = 3 \cdot \mathbb{Z}$

Proof Let k be such that $g^k = 1$. By Euclid, $k = q \cdot \operatorname{ord}(g) + r, 0 \le r < \operatorname{ord}(g)$. So, $1 = g^k = g^{q \cdot \operatorname{ord}(g) + r} = [g^{\operatorname{ord}(g)}]^q \cdot g^r = 1 \cdot g^r \Rightarrow g^r = 1$. As $r < \operatorname{ord}(g)$, we much have r = 0, therefore, $k = q \cdot \operatorname{ord}(g)$.

Lemma $g^i = g^j$ if and only if i - j is a multiple of $\operatorname{ord}(g)$.

Proof If $g^i = g^j$, then $g^{i-j} = 1$ and so if i-j is divisible by the $\operatorname{ord}(g)$. Conversely, if i-j is divisible by $\operatorname{ord}(g)$ then $i = j + n \cdot \operatorname{ord}(g)$ and so $g^i = g^{j+n \cdot \operatorname{ord}(g)} = g^j \cdot (g^{\operatorname{ord}(g)})^n = g^j$. **Theorem** Pick $g \in (G, \star)$. Then either $\operatorname{ord}(g) = \infty$ and $\langle g \rangle$ is not quite equal $(\mathbb{Z}, +)$ or $\operatorname{ord}(g) = k < \infty$ and $\langle g \rangle$ is not quite equal to $(\mathbb{Z}/k\mathbb{Z}, +)$. In both cases, the identification is

$$g^n \leftrightarrow n \ (\text{or} \ n \mod k\mathbb{Z})$$

$$g^n \cdot g^m = g^{n+m} \leftrightarrow n+m$$

This is know as the **morphism law**. **Example** In sym(\triangle), $\langle a \rangle$ supposedly equals ($\mathbb{Z}/2\mathbb{Z}, +$).