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By the end of the course, we will be given answers to the following:

1. Is it possible to write down explicit formulas to determine the roots of a
polynomial (e.g. cnx

n+cn−1x
n−1+. . .+co) in the terms of the coe�cients

cn, . . . , co in the same way as the roots of the quadratic equation as given
by (allowed operations are +, -, ÷, ×, k

√
),

r1,2 = − c1
2c2
±

√
c21
4c22
− co
c2

2. (Dido's Problem) Given a ruler, compass, and a cube of volume 1, can you
construct a cube of twice the volume? (Given a line segment of length 1,
can you construct a line segment of length

√
2)

3. With ruler and compass, can you disect arbitrary angles?

Math Symbols:

Symbol

N naturals - 0,1,2
Z ..., -3, -2, -1, 0, 1, 2, 3,...

Q rationals
{

p
q |p, q ∈ Z, q 6= 0

}
R reals
C complex numbers

In order to write math �sentences,� we use the following logic symbols,

Symbol

∈ �is element of�
⊆ �is subset of�
∃ �there exists�
∀ �for all�
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For example, ∀n ∈ N∃m ∈ N|m = n+ 1, for all natural n, there exists a real
number m, such that m = n+ 1.

Theorem Archimedian Property
If n ∈ N, m ∈ N with n 6= 0, then ∃q ∈ N with n · q > m.
Theorem Well-Ordering
If you take any non-empty subset S of N, then S has a minimal element.

(Contrast: Z has no such minimum).
Example Proof that

√
2 is not rational.

If
√

2 were rational, then
√

2 = p
q where p, q ∈ N and q 6= 0. p2

q2 = 2⇒ p2 =

2q2. p must be even, p = 2p′. Plugging in, (2p′)2 = 2q2 or 2 (p′)2 = q2. Thus

q = 2q′, 2 (p′)2 = (2q′)2, or (p′)2 = 2 (q′)2, or p′

q′ =
√

2. Assuming rationality,
p must exist and must be minimal. If such a p exists, however, p would not be
minimal. Contradiction shows that p does not exist.

Theorem Euclid
Given a, b ∈ Z, ∃q, r ∈ Z with a = qb+ r with 0 ≤ r < |b|.
Example a = 7, b = 2; 7 = 3 · 2 + 1. a = −4, b = 3, −4 = (−2) · 3 + 2.
De�nition Given a, b ∈ Z, there are natural numbers l = lcd (a, b), g =

gcd (a, b) where gcd (a, b) = max {n ∈ N|n divides a and b}, lcm(a, b) = max{n ∈
N| a divides n and b divides n}.

Euclidian Algorithm For gcd (a, b). Initialize: ao = a, bo = b. Iteration:
Write ai = qi · bi + ri with qi, ri ∈ Z and 0 ≤ ri < |bi|. Reset: ai+1 = bi,
bi+1 = ri until ri = 0. When ri = 0, gcd (a, b) = bi.

Example a = 47, b = 65; ao = 65, bo = 65. I1: 47 = 0 · 65 + 47, a1 = 65,
b1 = 47. I2: 65 = 1 · 47 + 18, a2 = 47, b2 = 18. I3: 47 = 2 · 18 + 11, a3 = 18,
b3 = 11. I4: 18 = 1 · 11 + 7, a4 = 11, b4 = 7. I5: 11 = 1 · 7 + 4, a5 = 7, b5 = 4.
I6: 7 = 1 · 4 + 3, a6 = 4, b6 = 3. I7: 4 = 1 · 3 + 1, a7 = 3, b7 = 1. I8: 3 = 3 · 1 + 0
END.

Note if a, b ∈ N, not zero,

lcm (a, b) =
a · b

gcd (a, b)

To illustrate, a = 20 · 32 · 51 = 45, b = 24 · 31 · 50 = 48. We claim that
lcm(a, b) · gcd (a, b) = a · b.(

2max(0,4) · 3max(2,1) · 5max(1,0)
)(

2min(0,4) · 3min(2,1) · 5min(1,0)
)

= a · b

This only works for two numbers. If we try to apply this to some a, b, and
c we will be sadly disappointed.

De�nitionWe say that a number n ∈ N is irreducible if an equation a·b = n
(with a, b ∈ N), either a = 1 or b = 1. We say that n is prime if �n divides
a · b� only happens if n|a or n|b

Fact Within the integers, �prime� and �irreducible� are the same.
Proof Prime ⇒ irreducble. Let n be prime, and assume that a · b = n,

(a, b ∈ N). Then n|ab and as n prime, n|a or n|b. If n|a, a = qn. So n = ab =
qbn, so qb = 1⇒ q, b = 1. Similarly, n|b⇒ a = 1.
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Corollary of Euclid If a > b, gcd (a, b) = gcd (b, a− b) = . . .. So, gcd (a, b)
is a linear combination of a, b : gcd (a, b) = xa+ yb with x, y ∈ Z.

January 15, 2008

Theorem gcd (a, b) is a linear combination of a and b: gcd (a, b) = ax + by
where x and y are integers (because of Euclidian Alogrith).

So let p be irreducible and suppose p|a · b. Need to sho: p|a or p|b. Suppose
p does not divide a, then gcd (p, a) is not p, hence 1 as p is irreducible. So,

1 = x · p+ y · a

with x, y ∈ Z. So,
b · 1 = x · b · p+ y · a · b

This says that p divides the RHS, so p|b. Similarly, if p does not divide b,
then p|a.

Fermat's Last Theorem It is not possible to obtain an = bn + cn for
a, b, c > 0 and n > 2.

Modular Arithmetic is a system of arithmetic for integers, where numbers
"wrap around" after they reach a certain value � the modulus. The basic idea
is to choose an integer n ∈ Z and equate it with 0. Let's say that n = 12.
�Survivors� are 0,1,...,11 in some sense.

De�nition �Z modulo n Z� Let n ∈ Z then let Z/nZ stand for the n families
of numbers {. . . ,−n, 0, n, 2n, . . .}, {. . . ,−n+ 1, 1, n+ 1, 2n+ 1, . . .}, {. . . ,−n− 1,−1, n− 1, 2n− 1, . . .}.

Theorem Things in Z/nZ can be added, subtracted, multiplied, and (in
lucky cases) divided.

Example n = 2. We have 2 families in Z/2Z, {. . . ,−2, 0, 2, 4, . . .}→ 0 +
2Z, {...,−3,−1, 1, 3, 5, . . .} → 1 + 2Z. One will note that there are an in�nite
representations of these two families. In adding the families together,

+ 0 + 2Z 1 + 2Z
0 + 2Z 0 + 2Z 1 + 2Z
1 + 2Z 1 + 2Z 0 + 2Z

Multiplying,

× 0 + 2Z 1 + 2Z
0 + 2Z 0 + 2Z 0 + 2Z
1 + 2Z 0 + 2Z

Fact Addition, subtraction, multiplication in Z/nZ can be done by �repre-
sentatives�:

(a+ nZ) + (b+ nZ) = (a+ b) + nZ

then,
a′ + b′ = a+ kn+ b+ ln

a′ + b′ = (a+ b) + n · (k + l)
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Similarly for multiplication,

(a+ nZ) · (b+ nZ) = (ab) + nZ

where (a+ nZ) is referred to as the �coset of a.�
Example Is a = 743126882431 divisible by 9? Note that a is divisible 9 if

and only if a+ 9Z = 0 + 9Z. What is a?

a = 1 · 100 + 3 · 101 + 4 · 102 + . . .+ 7 · 1011

10 ≡ 1, mod 9. So, 100 ≡ 10 · 10 ≡ 1 · 1 = 1 and 10k = 10k−1 · 10 ≡ 1 · 1 = 1.
Note that we call �≡� congruent. So,

a ≡ 1 · 1 + 3 · 1 + 4 · 1 + . . .+ 7 · 1

a = 49 which is the class 4. So the class/coset of a is the class of 4, not
the class of 0 which is the condition that needs to be met to be divisible by 9.
Therefore, 9 does not divide a.

Fact An integer is divislbe by 9 if and only if the sum of its digits in decimal
expansion expansion is divisible by 9.

a is divisble by 11 if and only if the alternating sum of the digits is divisible
by 11.

Example Divisibility by 7. 100 = 1 ≡ 1, 101 = 10 ≡ 3, 102 = 100 ≡ 2,
103 ≡ 6, 104 ≡ 4, 105 ≡ 5, 106 ≡ 1. So, for example, if I take 7144285019 ≡ 3.

GROUPS

De�nition A group G is a set with an operation ? such that 1.) a ? b is in
G, 2.) a ? (b ? c) = (a ? b) ? c (associativity), 3.) there is a special element 1G

for which a ? 1G = a and a = 1G ? a (identity), 4.) for all a ∈ G there is an
�inverse� b such that a ? b = 1G = b ? a (of course as a changes so does b).

January 20, 2009

Note that in most discussion, ? is merely a placeholder for an operation. In many
examples, the star will be replaced with a real arithmetic operation. Recall that
(G, ?) is a group if and only if

• G is a set with a binary operation ? : G ? G→ G

• slt (ab) c = a (bc)

• ∃1G ∈ G with 1G · g = g · 1G = g∀g

• ∀g ∈ G∃g−1 with gg−1 = 1

Examples

• (Z,+); know: a+ (b+ c) = (a+ b) + c, identity = 0, inverse = negative.
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• (Z/n,+); Z/n= {0 + nZ, 1 + nZ, . . . , (n− 1) + nZ}, where i+nZ = {. . . , i− 2n, i− n, i, i+ n, i+ 2n, . . .}
and (a+ nZ) + (b+ nZ) = (a+ b) + nZ.

• Q,R,C with +; identity = 0; inverse = negative

• (Q\ {0} ,×); we know a (bc) = (ab) c; identity = 1; inverse = inverse (note:
a 6= 0, b 6= 0⇒ ab 6= 0).

• Similarly, (R \ {0} ,×), (C\ {0} ,×)

• Let G be a group such as (Z,+), (Q,+), (R,+), (C,+). Let Gm,n be the
m×n matrices with entries in G. (Gm,n,+) is a group. Identity = m×n
matrix of zeros; inverse = matrix with �negatived� entries.

• Let GL (n,Q)= n×n matrices with rational entries, with matrix multipli-
cation as operation, and with det 6= 0. We know that A (BC) = (AB)C;
identity = indentity matrix; inverse = matrix inverse

• Symmetry groups: Consider an equilateral triangle with vertices a, b,
c.

Let's consider the collection of all rigid motions that transform the triangle into
itself. These are: [1] 2 rotations by 120o, l and r, [2] not doing anything, call
it 1, [3] 3 �ips, where each �ips �xes one of the corners a, b, or c and �ips
the triangle on the axis drawn from the triangle vertex perpendicular to the
opposing side. Together they form symmetry sym (4) = {1, l, r, a, b, c}. This
is all of the possibilities, because 3! = 6. We make this a group by composing
motions.

Multiplication table for sym (4), where the i− j entry = i ? j:

1 r l a b c
1 1 r l a b c
r r l 1 b c a
l l 1 r c a b
a a c b 1 l r
b b a c r 1 l
c c b a l r 1

Note that in each row and each column, each element shows exactly once.
Why? In any column we are looking at products of the form g × go, where go

is the column index and g runs through the group. What this means is that go

represents the column and g represents the row.
Suppse that some element x does not show in this column. This means that

some other element shows at least twice. What this tells us is for some go and
two di�erent g I get the same result, call it y. ggo = y ⇒ g

(
gog
−1
o

)
= yg−1

o ,
or g = yg−1

o , similarly g′ = yg−1
o . We can conclude then that g = g′and thus

nothing can be repeated, and nothing is missing.
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Note that in many cases,

g × g′ 6= g′ × g

Multiplication tables are symmetric if and only if gg′ = g′g in all cases.
De�nition (G,×) is Abelian (commutative) if the multiplication table is

symmetric (means: you can reorder factors in a product.)
Abelian Z, R, C; vector spaces, (Gm,n,+) where G = Z, Q, R, C; (Z/nZ,+)
Non-Abelian sym(4); most symmetry groups; G| (Q, n) and G| (R, n),

Gl (C, n).
Case study on inverting mod(n). Zeros are not admissable!
n = 2: 1 + 2Z = odd numbers.
Question Can we make {1 + 2Z} at multiplicative group? Yes.

1

1 1

n = 3: 1 + 3Z; 2 + 3Z

1 2

1 1 2
2 2 1

n = 4: 1̄ = 1 + 4Z, 2̄, 3̄, 4̄

1 2 3

1 1 - 3
2 - - -
3 3 - 1

In general, starting with Z/nZ, remove 0̄ and all cosets of numbers that
have a common gcd with n. If we do this, we are left with a set called U (u) or
(Z/nZ)× (the �units mod n�). Why do they make a group?

• If gcd (a, n) = gcd (b, n) = 1, then gcd (a ? b, n) = 1. So U (u) · U (n) ⊆
U (n).

• Associativity follows from Z group.

• Identity: 1 + nZ

• Inverse: assuming gcd (a, n) = 1 we need a b with gcd (b, n) = 1 and
ā · b̄ = 1̄.

Recall Euclidian algorithm and its consequence,

gcd (α, β) = xα+ yβ

with x, y ∈ Z. So, 1 = xa+ yn; thus x̄ā = 1̄− yn, x̄ = ā−1 and yn = 0̄.
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PERMUTATIONS

De�nition Given n labelled objects such as {1, . . . , n}, a permutation (on
n elements) is an ordering of these n objects.

Note There are n! = n (n− 1) (n− 2) . . . 2 · 1 such permutations. The
ways of writing permutations: standard notation (5,4,1,2,3) or []; cycle notation
(1,5,3)(2,4)

Note Irredundant cycle notation if and only if each number/object occurs
precisely once. Redundant if not irredundant.

Example What is the composition of permutations from right to left of
(1, 2, 3)?

(1, 2, 3)
(1,3)→ (3, 2, 1)

(1,2)→ (2, 3, 1)

This operation is written as (12) (13). The order of a permutation. Suppose
we �x one permutation (1,4,5)(2,3) = σ. After two executions of this permuta-
tion, we have (1,4,5)(2,3)(1,4,5)(2,3) = (1,5,4)

De�nition The order of a permutation σ is the smallest number ord (σ) ≥
1 such that ord(σ) iterations of σ combine to the identity permutation.

Example ord((1, 4, 5) (2, 3)) = 6.
Theorem Suppose σ is given in irredundant cycle notation, σ = c1·c2·. . .·ck.

Let li be the length of cycle ci. Then ord(σ) = lcm(l1, . . . , lk).
Remark Book says �disjoint cycle notation� for �irredundant cycle notation.�
De�nition A transposition is a 2-cycle.
Theorem Any permutation can be achieved by a composition of 2-cycles

(not disjoint usually).
Proof We need to show that any cycle is a composition of 2-cycles. Use

induction: let l be the length of the cycle. (a) = (l, a) (l, a), so l = 1. For l = 2,
there is nothing to do. For l > 2:

(a1, a2, a3, . . . , al) = (a1, a3, a4, . . . , al) (a1, a2)

Question Given σ, how many 2-cycles can be used to write σ as their
product? This is a bad question because σ = σ (1, 2) (1, 2) · · · . A better question
would be, can we say anything about the number of 2-cycles used to produce
σ?

De�nition The disorder of σ is the number of pairs {i, j} with 1 ≤ i <
j ≤ n , such that σ (i) > σ (j).

Example If σ (1, 2, 3, 4, 5) = 2,4,5,1,3. σ (1) = 2, σ (2) = 4, σ (3) = 5,
σ (4) = 1, σ (5) = 3.
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Pair In order after σ?

1,2 yes
1,3 yes
1,4 no
1,5 yes
2,3 yes
2,4 no
2,5 no
3,4 no
3,5 no
4,5 yes

De�nition σ is odd (-1) if its disorder is odd, and even (+1) if its disorder
is even. The �parity� of σ.

Note Any 2-cycle is odd. For the order 1 2 3. . . i . . . j . . . n permutes to 1
2. . . j . . . i . . . n. Who is out of order? Even: all pairs of numbers (a, i) with
i < a < j; all pairs of numbers (a, j)with i < a < j. The collection of all
permutations falls into even and odd choices. Every 2-cycle is odd.

Fact Suppose you compose 2 permutations σ and τ . The parity of the
product behaves as follows,

σ odd (-1) σ even (+1)

τ odd (-1) even (+1) odd (-1)
τ even (1) odd (-1) even (+1)

�Parity is a homomorphism, it respects products.� In particular, the num-
ber of even and odd permutations is the same. Taking any permutation and
composing it with two • (1, 2) yields identity.

De�nition The collection of all permutations of n elements is called the
symmetric group Sn.

January 27, 2009

SUBGROUPS

Suppose that (G, ?) is a group, we want to study the existence and structure
of subsets of G that are groups in their own right.

1 r l a b c

1 1 r l a b c
r r l 1 b c a
l l 1 r c a b
a a c b 1 l r
b b a c r 1 l
c c b a l r 1
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Find the sym(4). Recall that to be a group, the following conditions must
be met:

• H ?H ⊆ H

• Associative

• H should contain 1

• for h ∈ H, H should contain h−1

Subgroups

• {1}

• {1, a, b, c, l, r}

• {1, l, r}

• {1, a}, {1, b}, {1, c}

• {1, a, b, l, c, r}

To �nd the sym(4): {1}, G, {1, l, r}, {1, a}, {1, b}, {1, c}
De�nition A group G is called cyclic if it can be viewed as the collection

of all powers of a single element g.
Example Which groups are cyclic? {1} = 〈1〉, {1, a} = 〈a〉, {1, b} = 〈b〉,

{1, c} = 〈c〉, {1, l, r} = 〈l〉 = 〈r〉. On the other hand, we conclude that G is not
cyclic. G needs 2 generators for example a and b.

Lemma If g ∈ (G, ?), then its 〈g〉powers for a subgroup.
Proof Notation: let gk = g · . . . · g. We need to show that [1] 〈g〉 is closed

under ×, [2] 1 ∈ 〈g〉, and [3] each element of 〈g〉 has an inverse in 〈g〉. To
[1] gk · gl = gk+l, [2] take g0=1, and [3] the inverse to gk is g−k. Note that

g−k =
(
g−1

)k
.

Example (G, ?) = (Z,+). 〈2〉={. . . ,−4,−2, 0, 2, . . .}.
Recall ord(g)= smallest positive k, such that gk = 1. If no such k exists,

then ord(g) =∞.
Example sym(4), ord(a) = 1, ord(l) = 3, ord(1) = 1, in (Z,+), ord(2) =

∞.
Lemma Suppose ord(g) <∞, then

{
k ∈ Z|gk = 1

}
= Z · ord (g).

Example In sym(4) ,
{
k ∈ Z|lk = 1

}
=3 · Z

Proof Let k be such that gk = 1. By Euclid, k = q · ord (g) + r, 0 ≤ r <
ord (g). So, 1 = gk = gq·ord(g)+r=

[
gord(g)

]q ·gr= 1 ·gr ⇒ gr = 1. As r <ord(g),
we much have r = 0, therefore, k = q · ord (g).

Lemma gi = gj if and only if i− j is a multiple of ord(g).
Proof If gi = gj , then gi−j = 1 and so if i − j is divisible by the ord(g).

Conversely, if i − j is divisible by ord(g)then i = j + n · ord (g) and so gi =
gj+n·ord(g)= gj ·

(
gord(g)

)n
= gj .
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Theorem Pick g ∈ (G, ?). Then either ord(g) = ∞ and 〈g〉 is not quite
equal (Z,+) or ord(g) = k < ∞ and 〈g〉 is not quite equal to (Z/kZ,+). In
both cases, the identi�cation is

gn ↔ n (or nmodkZ)

gn · gm = gn+m ↔ n+m

This is know as the morphism law.
Example In sym(4), 〈a〉 supposedly equals (Z/2Z,+).
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