CSFT and Polar Coordinates

MONDAY, NOVEMBER 11TH, 2009 HECTOR SANTOS-VILLALOBOS

The fence analogy

The reasoning behind CSFT

The reasoning behind CSFT (Cont.)

The reasoning behind CSFT (Cont.)

The reasoning behind CSFT (Cont.)

6

- Nice examples of CSFT on images
 - o http://www.imagemagick.org/Usage/fourier/

The basics

Let

$$(x,y) =: (r\cos(\theta), r\sin(\theta))$$

$$f(x,y) = \tilde{f}(r,\theta)$$

$$(u, v) =: (\rho \cos(\phi), \rho \sin(\phi))$$

$$F(u,v) = \tilde{F}(\rho,\phi)$$

y

r

X

Trigonometry

$$r^{2} = x^{2} + y^{2}$$
, $\cos(\theta) = \frac{x}{r}$, $\sin(\theta) = \frac{y}{r}$

From rectangular to polar coordinates

Recall:

$$F(u,v) = \iint_{\Re^2} f(x,y)e^{-j2\pi(ux+vy)}dxdy$$

Change of variables:

$$dx \cdot dy = r \cdot dr \cdot d\theta$$

$$ux + vy = \rho \cos(\phi) r \cos(\theta) + \rho \sin(\phi) r \sin(\theta)$$

$$= \rho \cdot r (\cos(\phi) \cos(\theta) + \sin(\phi) \sin(\theta))$$

$$= \rho \cdot r \cdot \cos(\phi - \theta)$$

Then:

$$\tilde{F}(\rho,\phi) = \int_0^{2\pi} \int_0^{\infty} \tilde{f}(r,\theta) e^{-j2\pi\rho r \cos(\phi-\theta)} r \cdot dr d\theta$$

$$\tilde{f}(r,\theta) = \int_0^{2\pi} \int_0^{\infty} \tilde{F}(\rho,\phi) e^{j2\pi\rho r \cos(\phi-\theta)} \rho \cdot d\rho d\phi$$

Properties

9

Rotation:

$$\tilde{f}(r, \theta + \theta_o) \xrightarrow{\mathcal{F}} \tilde{F}(\rho, \phi + \theta_o)$$

*proof by variable substitution $z = \theta - \theta_o$

Circular symmetry:

$$\tilde{f}(r,\theta) = \tilde{f}_o(r) \Leftrightarrow \tilde{F}(\rho,\phi) = \tilde{F}_o(\rho)$$

Example of circular symmetry

circ(x,y)

jinc(u,v)