Problem 1 – Parametric Method: Discriminant Analysis
Background Information:

Discriminant Analysis is a technique to find the projection that best separates the data in a least squares sense.
Fisher Linear Discriminant is the special case when projecting the data from d dimensions onto a line.

Choices of the separation plane, w

[image: image1.png]

Figure 1. Projection of same set of two-classes samples onto two different lines in different directions. Left: classes missed Right: Better separation
Given the sample mean in the d-dimensional space,
[image: image2.png]

The sample mean of the projected points is

[image: image3.png]

The distance between projected means is

[image: image4.png]m,—m, |5 w'(m, —m,)|

and we want this quantity as large as possible for because it is the separation between the two projected sets.

Instead of forming sample variances, define scatter for the projected samples,
[image: image5.png];;2 = z ()’ _Ei)2

yel;

It measures the within class scatter, indicating how packed the data is. So for clearer separation, we want this quantity to be as small as possible.

Define [image: image6.png]|my—m; |
JW) ="———

(51 +52)

and maximize it to achieve the previous two requirements. To express
[image: image7.wmf])

(

·

J

as an explicit function of w, Si and Sw.
[image: image8.png]Sz' = Z (x —m)(x —;)t Within Class

xeD, / Scatter Matrix
Sy =8, +85,

[image: image9.png]Between Class

/ Scatter Matrix
Sy =(m —m,)(m, _mz)[

[image: image10.wmf])

(

·

J

can be written as

[image: image11.wmf]W

S

W

W

S

W

w

J

W

t

B

t

=

)

(

 EMBED Equation.3 [image: image12.wmf]
If Sw is non-singular, this problem turns into a conventional eiganvalue problem,

[image: image13.wmf]w

w

S

S

B

w

l

=

-

1

In our case, since Sb w is always in the direction of m1-m2, the solution can be obtained immediately, hence the solution for the w that optimizes
[image: image14.wmf])

(

·

J

[image: image15.wmf])

(

2

1

1

m

m

S

w

w

-

=

-

Experiments and Results
The data we use is N(
[image: image16.wmf]ú

û

ù

ê

ë

é

0

0

,
[image: image17.wmf]ú

û

ù

ê

ë

é

1

.

0

0

0

3

) and N(
[image: image18.wmf]ú

û

ù

ê

ë

é

2

5

,
[image: image19.wmf]ú

û

ù

ê

ë

é

1

.

0

0

0

3

). The data from two classes is plotted in the figure below. In this particular case, the vertical axis obviously forms a better separation for both classes then the horizontal axis. However, if only the numerator of
[image: image20.wmf])

(

·

J

is optimized, the optimization of the denominator is neglected with Sw set to the identity matrix, then the horizontal axis will be chosen over the vertical axis as a better separation because it has a larger between class distance, |m1-m2|. It ignores the variances of the within class scatter matrices.
[image: image21.jpg]smaller variance but less separafion

larger variance but more separation

10

Figure 2. Two classes of data to illustrate the importance of optimizing Sw
To illustrate this, the same set of data is projected onto a line in the optimal direction computed by Fisher Linear Discriminant and it is denoted by Wopt and a line with only numerator of
[image: image22.wmf])

(

·

J

 maximized, denoted by Wsw=I. The plot is shown in Figure 3. The solid line has the projected data with maximun |m1-m2|, but it does not take the variance of the within class scatters into account. The dotted line gives the optimal solution that takes both |m1-m2| and S1, S2 into account.

[image: image23.jpg]smaller variance but less separafion

Gomparison between W and W,
opt 'Sw=l

* Classt

* Class2

e Wy
W

2 0 2 4 6
larger variance but more separation

10

Figure 3. Results for optimizing
[image: image24.wmf])

(

·

J

 and the numerator of
[image: image25.wmf])

(

·

J

 only
[image: image26.jpg]Projection onto 5,
op

t

Class1 on'W.
opt

t

Class2 onW__ []
opt

VIV

50

100

150

[image: image27.jpg]30

20

10

Projection onto 5 =1
w

Class1 on'W,
non-opt

Glass2 on'W,
non-opt

i
|

50

100

150

Figure 4. The projection onto Wopt is more separable then W with Sw=I
The projections of the data on two different lines are shown in Figure 4. It clearly shows that the result using Fisher Linear Discriminant is better separated because of the smaller within class variances.
The experiments is data dependent because if N(
[image: image28.wmf]ú

û

ù

ê

ë

é

1

1

,
[image: image29.wmf]ú

û

ù

ê

ë

é

1

0

0

1

) and N(
[image: image30.wmf]ú

û

ù

ê

ë

é

-

-

1

1

,
[image: image31.wmf]ú

û

ù

ê

ë

é

1

0

0

1

) is used, there will not be obvious difference between the results for Wopt and WSw=I because the within class scatter variances are the same in all direction, as a result optimizing the denominator of
[image: image32.wmf])

(

·

J

 or not give the same results.
[image: image33.jpg]Projection onto 5,
opt

004

Class1 on'W.
opt

003

Glass2 on W,
opt
T

t

02

001 M

[} 50 100 150

[image: image34.jpg]Projection onto 5 =1
w

15

10

Class1 on'W,
non-opt

Glass2 on'W,

non-opt ||

50

100 150

Figure 5: With N(
[image: image35.wmf]ú

û

ù

ê

ë

é

1

1

,
[image: image36.wmf]ú

û

ù

ê

ë

é

1

0

0

1

) and N(
[image: image37.wmf]ú

û

ù

ê

ë

é

-

-

1

1

,
[image: image38.wmf]ú

û

ù

ê

ë

é

1

0

0

1

) , both projections are not very separable

Problem 2 - Neural Network:
Background Information
A basic artificial neural network architecture consists of several layers of artificial neurons connected together. The neurons that receives information from outside the network are considered to be in the input layer. If a neuron contains the network's predictions or classifications, it is in the output layer. Those between them are in the hidden layer. The input neurons are scaled between 0 and 1 or -1 to 1. Then there is a transfer function, it can ne a log function, sigmoid function, or a hyperbolic tangent function.
As values are sent from one layer to the next, a weight is assigned to each interconnecting line and is multiplied by the values. Each neuron on the hidden layer sums all inputs, and the combined input is modified by the transfer function.

The output value of the transfer function is generally passed directly to all neurons in the next layer, again with a weight assigned to each value. Values of the interconnecting weights predetermine the neural network's computation reaction to any arbitrary input pattern. As information is passed forward from the inputs toward the outputs, interconnecting weights are adjusted by a back-propagation algorithm during the learning phase so that known outputs will best match predicted outputs.
In order to adjust the weights based on the training patterns and matching the known outputs to the predicted outputs, each epoch changes the weight by an amount proportional to the different between the desired output and actual output.

[image: image39.wmf]i

k

k

x

tar

out

w

)

(

-

=

D

h

Where out is the target output, out is the actual output, and
[image: image40.wmf]h

 is the learning rate.
[image: image41.png]Multilayer Perceptron

input layer: hidden layer: output layer;

dfeatures m olétgégsdggg for

Figure 5. Neural Netowrk

Neural Network:

1D samples with distribution N(1,2) and N(-1,2) are used in out experiments. Half of the samples are used as the training data and the remaining half is used for testing. To show the performance of the classifiers, the error training for different number of nodes is plotted in the following figure. N1 denotes the number of nodes in the first layer, N2 is the number of nodes in the hidden layer, and N3 is the number of nodes in the last layer.
[image: image42.jpg]error training

08

=}
o

o
=

1=}
=)

=}
o

=}
=

N1=4 N2=12 N3=2
N1=4 N2=BN3=2 [|
N1=4 N2=12 N3=8
N1=BN2=12 N3=2 [|

epochs

Figure 6. Error training as a function of number of epochs

Support Vector Machine:

Background Information

Support vector machines map a given set of binary labeled training data to a high-dimensional feature space and separate the two classes of data with a maximum margin hyperplane.
This problem is reformulated as one of maximizing

[image: image43.png]

Subject to the constraints

[image: image44.png]

Given the training data.

Where the kernel function is defined by

[image: image45.png]K. v) =y, v =0(x,) 4(x,)

Implantation can be done using quadratic programming.
Experiments and Results

The set of data used is N(1,2) for class 1 and N(-1,2) for class 2. The number of support vectors and number of Misclassification are plotted in Figure 7.
[image: image46.emf]0 2 4 6 8 10 12

0

50

100

150

200

250

of Support Vector

C

[image: image47.emf]0 2 4 6 8 10 12

0

20

40

60

80

100

120

of Misclassification

C

Figure 7: The number of support vectors and number of Misclassification.

Problem 3

Classification using K-Nearest Neighbor and Nearest Neighbor
K-Nearest Neighbor classifies an unknown vector by assigning it the label most frequently represented among the k nearest samples and use a voting scheme. An example is shown in the figure below, the unknown data point is classified into either class 1 or class 2. Using the KNN method, with K=5, the nearest 5 neighbors are used for the voting scheme. The metric used is the Euclidean distance. Since there are more samples from class 1 then the number of samples from class 2, this unknown data point is classified into class 1.

[image: image48.jpg]Exarmple of KNN (K=5)

.
.
.

Class 1
Class 2
Unknown Point

—=Distance

9 |

. s
=
4.
oA
i
5 "
.

v

Figure 8: The unknown sample point is classified into Class 1.

KNN has k fixed but its volume is a function of the data. It centers each cell (region) at x0 and let it grow until it captures k samples.

If the density of samples is high near x, the cell will be small, and if the density is low, the cell will be large.

The method Nearest Neighbor is a special case of K-Nearest Neighbor when k = 1.
An unknown data will be classified to the same class as its nearest neighbor is in.
Experiments and Results
1D samples with distribution N(1,2) and N(-1,2) are used to train and test the algorithms. With total number of sample points = 150 and number of neighbors = 5 for kNN, the probabilities of the sample in class 1 and class 2 are plotted in the following figures.

[image: image49.jpg]1D example: px; in class 1lits 5 neighbors) and p(x, in class 2lits 5 neighbors)
14

—— plxy in class 1lts 5 neighbors)

12 —— plxy in class 2lts 5 neighbors)

08

08

04

02

Figure 9: kNN with k = 5

[image: image50.jpg]1D example: px, in class 1lits 1 neighbor) and p(x, in class 2lits 1 neighbor)
[

bty in class Tfits 1 neighbar)

7 —— plxy i class 2lts 1 neighbor)

Figure 10: NN

Classification Rules:

For two classes, we estimate the probability
[image: image51.wmf])

|

(

i

w

x

P

, i=1, 2, as
[image: image52.wmf]V

n

k

w

x

p

i

i

n

/

)

|

(

=

Then we compare
[image: image53.wmf])

|

(

1

w

x

P

 and
[image: image54.wmf])

|

(

2

w

x

P

and choose the larger one as the class of sample x.
Error rate of kNN and NN:
Comparing k-NN to NN, k-NN has the advantage in that it is more robust to outliers (noise) in the training data as not a single data point is relied upon but a neighborhood of K points.

The error rate of classification using different values of K is shown in Table 1. The experiment shows that the error rate if higher when using NN (K = 1), and the error rate decreases as the number of neighbors considered increases.

However there is a drawback for using a larger K, it has to find more nearest neighbors, and it can be slow for a large training set.

Optimal k for normal distributions, it depends on the dimension of the data

	
	K=1
	K=3
	K=5
	K=7

	Error Rate
	0.35
	0.29
	0.25
	0.24

Table 1: Error rate for different values of K
Experiments with
[image: image55.wmf]training

n

k

n

_

=

 are also done to shown the error rate of different size of the training set.
	
	K=
sqrt(1000)
	K=

sqrt(10000)
	K= sqrt(100000)
	K= sqrt(1000000)

	Error Rate
	0.2032
	0.223
	0.2388
	0.2338

Table 2: Error rate for different values of K
Classification using Parzen Windows
Parzen Windows classifies an unknown vector by assigning it the label most frequently represented among the nearest samples within a region
[image: image56.wmf]n

R

 which is a d-dimensional hypercube of fixed size using a voting scheme. The length of an edge of the hypercube is denoted by
[image: image57.wmf]n

h

is, and the volume of it is denoted by
[image: image58.wmf]d

n

n

h

V

=

.

An example is shown in the figure below, the unknown data point is classified into either class 1 or class 2.
[image: image59.png]Parzen Window in 2D

X
X
\ X

X

same 1 for any x,

Figure11: Parzen Windows has a fixed volume but number of data point is a function of the data. Kn can be 3 (left), 2 (middle), or 1(right).
If the density of samples is high near x, the cell will capture more samples (larger k), and if the density is low, the cell will capture less samples (smaller k).
Density Estimation using Parzen Windows
A window function
[image: image60.wmf])

(

v

f

is needed for density estimation using Parzen Windows. Examples of windows include unit function, Gaussian function, Epanechnikov function, and Traingle function. The estimated density is given as:

[image: image61.wmf]å

=

÷

÷

ø

ö

ç

ç

è

æ

-

=

n

i

n

i

n

n

h

x

x

V

n

x

p

1

1

1

)

(

f

In our experiment, the density is expressed as:

[image: image62.wmf]V

N

k

x

p

/

)

(

»

Where x is the sample inside some region R, k is the number of samples inside R, n is the total number of samples inside R, and V is the volume of R

Effect of Window Size h

By choosing h, we are guessing the region where density is approximately constant. If h is too small, we superimpose n sharp pulses centered at the data, so the result will be noisy and not smooth. On the other hand, if h is too large, the result will be over-smoothed and lack of details. As h increases, the ‘smoothing’ effect increases as well.
[image: image63.png]

Figure 12.
Left: For small h, classification on training data is perfect. However, decision boundaries are complex.
Right: For large h, classification on training data is not perfect. However, decision boundaries are simpler.

Experiments and Results
The set of samples used are N(1,
[image: image64.wmf]2

) and N(-1,
[image: image65.wmf]2

) . Different window size and different number of samples are varied to show their effect on the estimation.
The results for classification using Parzen Windows is show in table 3 and the results of the density estimation of the training samples are shown in the following figures.
	P(e)
	N = 1000
	N = 10000

	h1 = 0.1
	0.3530
	0.2510

	h1 = 1
	0.2360
	0.2280

	h1 = 5
	0.2100
	0.2350

	h1 = 10
	0.2100
	0.2350

Table 3. Probability of error using different window size and number of samples
[image: image66.jpg]07

06

05

04

03

02

01

035

03

025

02

015

01

0,05

class 1
L class 2 ||
L L L i
£ - 2 0 4
n=1000andht =5
class 1
L class 2
L L L L
3 2 o 4

n=1000andht =0

035

03

025

02

015

01

005

035

03

025

02

015

01

005

=1000andhi =1

class 1
class 2 ||

n

1000and ht =10

class 1
class 2 ||

Figure 13: Number of samples used = 1000 and window size = 0.1,1 , 5, 10

[image: image67.jpg]07

06

05

04

03

02

01

035

03

025

02

015

01

0,05

class 1
L class 2 ||
L L
£ - 2 0 2
n=10000andhi =5
class 1
L class 2
L L L L
- 2 o 2

n=10000andh1 =0

035

03

025

02

015

01

005

035

03

025

02

015

01

005

n

10000 and h =

class 1
class 2 ||

n=10000andh1 =10

N3

class 1
class 2

 Figure 14: Number of samples used = 10000 and window size = 0.1,1 , 5, 10
The results show that if the window size is too large, a lot of details will be missed. If the window size is too small, the estimation will suffer from too much statistical variability.
For data that is clustered less densely, hence data vectors are more spread out. Small kernels for Parzen windows and small k values for kNN tend to result in overfitting since it is likely that points from a different class are close to the examined data vector.

 Problem 1
% Nearest Neighbor

% sample data

n = 100;

train_data = n/2;

test_data = n/2;

% Data set 1:

mean_x1 = 1;

var_x1 = 2;

x1 = mean_x1 + sqrt(var_x1)*randn(1,n);

x1_train = x1(1:train_data);

x1_test = x1(train_data+1:end);

% Data set 2:

mean_x2 = -1;

var_x2 = 2;

x2 = mean_x2 + sqrt(var_x2)*randn(1,n);

x2_train = x2(1:train_data);

x2_test = x2(train_data+1:end);

% function of kn (KNN)

kn = ceil(sqrt(train_data));

% function of kn (NN)

%kn = 1;

x = -5:0.2:10;

L_x = length(x);

p1_nn = zeros(1,L_x);

p2_nn = zeros(1,L_x);

for i = 1:L_x

 index_sort1 = sort(abs(x1_train - x(i)));

 V1 = 2 * index_sort1(kn);

 index_sort2 = sort(abs(x2_train - x(i)));

 V2 = 2 * index_sort2(kn);

 if (V1 > 0)

 p1_nn(i) = kn/train_data/V1;

 end

 if(V2 > 0)

 p2_nn(i) = kn/train_data/V2;

 end

 if (p1_nn(i)>10)

 p1_nn(i)=0;

 end

 if (p2_nn(i)>10)

 p2_nn(i)=0;

 end

end

figure

plot(x,p1_nn,'r.-',x,p2_nn,'b.-')

% Classification

error_nn_total = 0;

error1 = 0;

error2 = 0;

for i = 1:test_data

 j1_nn = find(abs(x-x1_test(i)) <=0.1);

 if (p1_nn(j1_nn) < p2_nn(j1_nn))

 error1 = error1 +1;

 end

 j2_nn = find (abs(x-x2_test(i))<=0.1);

 if(p2_nn(j2_nn) < p1_nn(j2_nn))

 error2 = error2 +1;

 end

end

error_nn_total = (error1 + error2)/2/test_data

Problem 3

n = 1000;

train_data = n/2;

test_data = n/2;

% Data set 1: x1 with distribution N(a,b) (mean=a, var=b)

mean_x1 = 1;

var_x1 = 2;

x1 = mean_x1 + sqrt(var_x1)*randn(1,n);

x1_train = x1(1:train_data);

x1_test = x1(train_data+1:end);

% Data set 2: x2 with distribution N(a,b) (mean=a, var=b)

mean_x2 = -1;

var_x2 = 2;

x2 = mean_x2 + sqrt(var_x2)*randn(1,n);

x2_train = x2(1:train_data);

x2_test = x2(train_data+1:end);

% 1st estimation by Parzen window

d = 1; % dimention

x = -7:0.2:7;

L_x = length(x);

%setting h1

error_total = zeros(1,3);

error_parzen_prob = zeros(1,3);

hh1 = [0.1 1 5 10];

for kk=1:length(hh1)

 h1 = hh1(kk);

 hn = h1/sqrt(train_data);

 Vn = hn^d;

 Q1 = zeros(1,train_data);

 prob1_train = zeros(1,L_x);

 Q2 = zeros(1,train_data);

 prob2_train = zeros(1,L_x);

 for i = 1:L_x

 for j = 1:train_data

 Q1(j) = 1/(sqrt(2*pi))*exp(-(x(i) - x1_train(j))^2/(2*hn^2));

 Q2(j) = 1/(sqrt(2*pi))*exp(-(x(i) - x2_train(j))^2/(2*hn^2));

 prob1_train(i) = prob1_train(i) + 1/train_data*1/Vn*Q1(j);

 prob2_train(i) = prob2_train(i) + 1/train_data*1/Vn*Q2(j);

 end

 end

 subplot(2,2,kk);

 plot(x,prob1_train,'b-', x,prob2_train,'r-')

 legend('class 1','class 2');

 title(['n = ',int2str(n),' and h1 = ',int2str(h1)],'Color','m');

 % 2nd step classification and errors by Parzen window method

 error1 = 0;

 error2 = 0;

 for i = 1:test_data

 parzen = find(abs(x-x1_test(i)) <= 0.1);

 if (prob1_train(parzen) < prob2_train(parzen))

 error1 = error1 + 1;

 end

 parzen2 = find(abs(x-x2_test(i)) <= 0.1);

 if(prob2_train(parzen2) < prob1_train(parzen2))

 error2 = error2 + 1;

 end

 end

 error_total(kk) = error1 + error2

 error_parzen_prob(kk) = error_total(kk)/(2*test_data)

end

Problem 2a

close all;

clear all;

%rand('state',100);

% the neurons have a sigmoid function activation

% data length

for kk=1:4

 N123 = [3 10 3 3 ; 10 4 4 4 ; 2 2 10 2];

 N1=N123(1,kk);

 N2=N123(2,kk);

 N3=N123(3,kk);

 % length training set

 % iter = epochs

 iter = 20;

 iter_test = 20;

 Target = zeros(1,N3);

 % initialize weights

 W_hid_in = rand(1,N1);

 W_hid_out = rand(1,N2);

 error_epoch = zeros(1,iter);

 error_epoch_test = zeros(1,iter_test);

 Mean1 = 1;

 Mean2 = -1;

 std1 = 2;

 std2 = 2;

 data_class1 = Mean1 + std1*randn(1,N1);

 data_class2 = Mean2 + std2*randn(1,N1);

 for k=1:iter

 if (mod(k,2)==0)

 training_data = data_class1;

 else

 training_data = data_class2;

 epoch=k,

 end

 for i=1:N1

 sig_output(i) = training_data(i);

 end

 % training the neural network step

 % outputs

 for n=1:N3

 in_last(n)=0;

 for j=1:N2

 input_hid(j)=0;

 for i=1:N1

 input_hid(j) = input_hid(j)+W_hid_in(i)*sig_output(i);

 end

 W_old_hidden(:,j) = W_hid_in';

 sig_output_hid(j) = (1)/(1+exp(-input_hid(j)));

 in_last(n) = sig_output_hid(j)*W_hid_out(j)+in_last(n);

 end

 out(n) = (1)/(1+exp(-in_last(n)));

 W_old_output(:,n) = W_hid_out';

 end

 lear_rate = 0.25;

 % backpropagation step

 % calculate errors of output neurons

 for i=1:N3

 delta(i) = out(i)*(1-out(i))*(Target(i)-out(i));

 end

 % Change output layer weights

 for i=1:N2

 for j=1:N3

 W_new_output(i,j) = W_old_output(i,j)+lear_rate*delta(j)*sig_output_hid(i);

 end

 end

 % back-propagate

 for i=1:N2

 ssuumm=0;

 for j=1:N3

 ssuumm = delta(j)*W_new_output(i,j)+ssuumm;

 end

 delta_hid(i) = sig_output_hid(i)*(1-sig_output_hid(i))*ssuumm;

 end

 % change hidden layer weights

 for i=1:N1

 for j=1:N2

 W_new_hidden(i,j) = W_old_hidden(i,j)+lear_rate*delta_hid(j)*training_data(i);

 end

 end

 W_old_output = W_new_output;

 W_old_hidden = W_new_hidden;

 % forward pass with the new weights

 for i=1:N1

 sig_output(i) = training_data(i);

 end

 % outputs

 for n=1:N3

 in_last(n) = 0;

 W_hid_out = W_new_output(:,n)';

 for j=1:N2

 input_hid(j) = 0;

 W_hid_in = W_new_hidden(:,j)';

 for i=1:N1

 input_hid(j) = input_hid(j)+W_hid_in(i)*sig_output(i);

 end

 sig_output_hid(j) = (1)/(1+exp(-input_hid(j)));

 in_last(n) = sig_output_hid(j)*W_hid_out(j)+in_last(n);

 end

 output(n,k) = (1)/(1+exp(-in_last(n)));

 error(k) = abs(Target(n)-output(n,k));

 end

 error_epoch(k) = (error_epoch(k)+error(k))/k;

 end

 x=1:iter;

 hold on;

 if kk==1 plot(x,error_epoch,'m'); end

 if kk==2 plot(x,error_epoch,'g'); end

 if kk==3 plot(x,error_epoch,'r'); end

 if kk==4 plot(x,error_epoch,'b'); end

 xlabel('epochs');

 ylabel('error training');

 y=zeros(1,iter_test);

 %% Testing...

 for k=1:iter_test

 data_class1 = Mean1 + std1*randn(1,N1);

 data_class2 = Mean2 + std2*randn(1,N1);

 % Generating the test data

 p=randperm(2);

 if (p(1)==1)

 training_data = data_class1;

 else

 training_data = data_class1;

 end

 epoch=k,

 for i=1:N1

 sig_output(i) = training_data(i);

 end

 % outputs

 for n=1:N3

 in_last(n) = 0;

 for j=1:N2

 input_hid(j) = 0;

 for i=1:N1

 input_hid(j) = input_hid(j)+W_hid_in(i)*sig_output(i);

 end

 sig_output_hid(j) = (1)/(1+exp(-input_hid(j)));

 in_last(n) = sig_output_hid(j)*W_hid_out(j)+in_last(n);

 end

 outpu_test(n,k) = (1)/(1+exp(-in_last(n)));

 error_test(k) = abs(Target(n)-outpu_test(n,k));

 end

 error_epoch_test(k) = (error_epoch_test(k)+error_test(k))/k;

 y(k)=(y(k)+1)/k

 end

 x=1:iter_test;

 %hold on; plot(x,y,'b'); hold on;

 %hold on; plot(x,error_epoch_test,'c'); hold off;

 W_hid_in,

 W_hid_out,

end

Problem 2b
clear; % clear variables from memory

close all;

nsample = 100;

X = zeros(nsample,1);

Y = zeros(nsample,1);

Mean1 = 0;

Mean2 = -1;

std1 = 2;

std2 = 2;

data_class1 = Mean1 + std1*randn(1,nsample/2);

data_class2 = Mean2 + std2*randn(1,nsample/2);

X(1:nsample/2) = data_class1;

X(nsample/2+1:nsample) = data_class2;

X = sort(X);

plot(data_class1,'ko');hold on;

plot(data_class2,'g+');

p = randperm(nsample);

Y(p(1:nsample/2)) = -1;

Y(p(nsample/2+1:nsample)) = 1;

% the trade-off weights we want to investigate , 2000, 5000, 10000, 100000

C = [0.1, 1, 5, 10, 20, 50, 100, 200, 500, 1000];

Margin = []; % margin; initialized as null

nSV = []; % number of support vector;

nMis = []; % number of misclassification;

Err = []; % training errors;

X,Y,

for n = 1 : max(size(C)),

 % construct Hessian matrix; Hessian matrix is the Q matrix in our slides; also called Kernel matrix

 H = zeros(nsample, nsample); % initialize H; set H to a nsample * nsample zero matrix

 for i = 1 : nsample,

 for j = 1 : nsample,

 H(i,j) = X(i)*X(j)*Y(i)*Y(j); % !!! please write your answer here !!!

 end

 end

 H = H+1e-10*eye(size(H)); % add 1e-10 to the main diagonal of H; a trick to make H stable

 F = -ones(nsample,1); % F' * Alpha corresponds to sigma_i(Alpha_i) in object function

 % set up equality constraints

 A = Y'; % corresponds to sigma_i(Alpha_i * Y_i) = 0

 b = 0;

 % set up upper and lower bounds for alpha: LB <= Alpha <= UB

 UB = zeros(nsample,1);

 LB = C(n)*ones(nsample,1);

 % starting point of alpha

 Alpha0 = zeros(nsample, 1);

 % optimizing alpha with quadratic programming

 [Alpha] = quadprog(H, F, [], [], A, b, LB, UB, Alpha0),

 % Alpha = qp(H, F, A, b, LB, UB, Alpha0, 1);

 % tolerance for support vector detection; we will ignore the alphas less than tol

 tol = 0.0001;

 % calculate weight

 w = 0;

 for i = 1 : nsample,

 w = w + Alpha(i) * Y(i) * X(i);

 end

 % calculate bias

 bias = 0;

 b1 = 0;

 b2 = 0;

 for i = 1 : nsample,

if (Alpha(i) > tol & Alpha(i) < C(n) - tol),

 b1 = b1 + X(i) * w - Y(i);

 b2 = b2 - 1;

 end

 end

 if b2 ~= 0,

 bias = b1 / b2;

 else % unlikely

 b1 = 0;

 for i = 1 : nsample,

 if Alpha(i) < tol,

 b1 = b1 + X(i) * w - Y(i);

 b2 = b2 - 1;

 end

 end

if b2 ~= 0,

 bias = b1 / b2;

 else % even unlikelier

 b1 = 0;

 for i = 1 : nsample,

 b1 = b1 + X(i) * w - Y(i);

 b2 = b2 - 1;

 end

 if b2 ~= 0,

 bias = b1 / b2;

 end

 end

 end

 % margin = 2 / ||w||

 Margin = [Margin, 2 / abs(w)]; % the operation A = [A, v] appends v to matrix A

 % number of support vectors

 nSV = [nSV, size(find(Alpha > tol), 1)];

 % calculate # of misclassification and training error

 m = 0;

 e = 0;

 for i = 1 : nsample,

predict = w * X(i) + bias; % Y = w * X + b

 if predict >= 0 & Y(i) < 0,

 m = m + 1;

 end

 if predict < 0 & Y(i) >= 0,

 m = m + 1;

 end

 if Alpha(i) > tol, % consider support vectors only; why?

 e = e + 1 - predict * Y(i);

 end

 end

 nMis = [nMis, m],

 Err = [Err, e],

end

% plot C_margin, C_trainingerror, C_misclassification, C_nsupportvector

% please use your code to make better plots instead of ours

Z = zeros(size(C));

for i = 1 : size(C, 2)

 Z(i) = i;

end

figure

plot(Z, Margin);

title('Margin');

xlabel('C(i)');

figure

plot(Z, Err);

title('Training Error');

xlabel('C(i)');

figure

plot(Z, nMis);

title('# of Misclassification');

xlabel('C(i)');

figure

plot(Z, nSV);

title('# of Support Vector');

xlabel('C(i)');

_1268544627.unknown

_1268544674.unknown

_1268477325.unknown

_1268516922.unknown

_1268542934.unknown

_1268542963.unknown

_1268542986.unknown

_1268542944.unknown

_1268516929.unknown

_1268492532.unknown

_1268493573.unknown

_1268477570.unknown

_1268477339.unknown

_1268023914.unknown

_1268297618.unknown

_1268297702.unknown

_1268477016.unknown

_1268297644.unknown

_1268023916.unknown

_1268297534.unknown

_1268023915.unknown

_1268023906.unknown

_1268023913.unknown

_1268023868.unknown

_1268023870.unknown

_1268023883.unknown

_1268023869.unknown

_1268023867.unknown

