\qquad

- You have 120 minutes to work the following five problems.
- Be sure to show all your work to obtain full credit.
- The exam is closed book and closed notes.
- Calculators are permitted.

1. (30 pts.) Consider the waveform $x(t)$ shown below

This signal is sampled at interval $T=1$ to generate the signal $x[n]$.
a. Suppose $x[n]$ is input to the system described by $y[n]=\frac{1}{2}(x[n]+x[n-1])$.

Plot the output signal $y[n]$.
b. Find the CTFT $X(f)$ of $x(t)$.
b. Using your answer to part b. and the relation between CTFT and DTFT, find the DTFT $X(\omega)$ of $x[n]$.
b. The signal $x[n]$ is input to an LTI system with frequency response:

Find the output signal $y[n]$.

1. (continued)
2. (30 pts) A causal LTI system has transfer function

$$
H(z)=\frac{1-z^{-1}}{1+\frac{1}{2} z^{-2}}
$$

a. Find a difference equation that can be used to implement this system.
b. Plot the poles and zeros for this system in the Z plane. Is the system BIBO stable?
c. Use the graphical approach to find the magnitude $|H(\omega)|$ of the frequency response at the frequencies $\omega=0, \pi / 2$, and .
d. Use the graphical approach to find the phase $\angle H(\omega)$ of the frequency response at the frequencies $\omega=0$ and $\pi / 2$.
e. Use $Z T$ methods to find the response of this system to a unit step input $u[n]$.
2. (continued)

3 (30 pts.) The figure below shows the CTFT of the speech waveform $s(t)$ for a single phoneme.

a. Is this phoneme voiced or unvoiced? What is the pitch period, and what are the first three formant frequencies?
b. Sketch what a wideband spectrogram of this waveform would look like. Be sure to label all important quantities.
c. Sketch what a narrowband spectrogram of this waveform would look like. Be sure to label all important quantities.

The waveform $s(t)$ with CTFT $S(f)$ shown above is bandlimited to 4 kHz , and sampled at an 8 kHz rate. A 4096 point FFT $X[k]$ is computed of a segment of this data.
d. Sketch what this FFT would look like for $k=0, \ldots, 4095$. Be sure to indicate the interval in k corresponding to the pitch period, and the values of k corresponding to the first three formants.
3. (continued)
4. (30 pts.)
a. Sketch the signal $f(x, y)=[1+\cos (2 \pi x)] \operatorname{rect}(x)$.
b. Find and sketch the CSFT $F(u, v)$ of the signal $f(x, y)$ in part a. above.
c. Consider a spatial filter with point spread function $h[m, n]$ given below

$h[m, n]$			
m	n		
		0	1
	0	2	-1
	1	-1	1

d. Find a difference equation that can be used to implement this filter.
e. Find the output $g[m, n]$ when the filter in part c . is applied to the following input image

0	0	0	0	0	0	0
0	0	0	0	1	0	0
0	0	0	1	1	0	0
0	0	1	1	1	0	0
0	1	1	1	1	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

f. Find a simple expression for the magnitude $|H(\mu, v)|$ of the frequency response of this filter, and sketch it along the μ and ν axes, and the $\mu=v$ axis. (Hint: Write $h[m, n]$ as the sum of an impulse $\delta[m, n]$ and another signal.)
4. (continued)

5. (30 pts.)

Consider the signal $f(x . y)$ shown below

which has value 1 in the shaded areas, and value 0 , elsewhere.
a. Find a simple expression for the CSFT $F(u, v)$ of this signal, and sketch it.
b. Find the convolution of $f(x . y)$ with itself, and sketch it. Note: You can use a graphical approach to solve this problem. It is not necessary to write down a detailed expression for the answer. An accurate and complete picture will get you full credit, assuming you also indicate how you derived that picture.
c. Sketch the Radon transform $p_{\theta}(t)$ of $f(x . y)$ for the angles $\theta=0, \pi / 4$, an at $/ 2$. Note: You can use a graphical approach to solve this problem. It is not necessary to write down a detailed expression for the answer. Accurate and complete plots will get you full credit, assuming you also indicate how you derived those plots.
5. (continued)
1.
2.
3.
4.
5.

Total

