Problem 73

Let $R := \mathbb{Z}[\sqrt{p}]$. Given any element $\alpha \in R$, denote by $\overline{\alpha}$ the conjugate of α , i.e. the image of α under the field automorphism $\sqrt{p} \mapsto -\sqrt{p}$ of $\mathbb{Q}(\sqrt{p})$. Note that $\alpha \mapsto \overline{\alpha}$ is a ring automorphism of R, and therefore $\alpha \mid \beta$ in R iff $\overline{\alpha} \mid \overline{\beta}$ in R.

Suppose R is a UFD. We show that this implies that 2 has no irreducible factors. Since this contradicts the fact that in a Nötherian domain, such as R, every non-unit can be factored into irreducibles, R must not be a UFD.

Suppose $\gamma \in R$ is an irreducible factor of 2. Then $\overline{\gamma} | \overline{2} = 2$, so since R is a UFD, $N(\gamma) = \gamma \overline{\gamma} | 2$ in R and hence in \mathbb{Z} (if $2 = (r + s\sqrt{p})N(\gamma)$, then s = 0 since $N(\gamma) \in \mathbb{Z}$, so $2 = rN(\gamma)$). But γ is irreducible and therefore a non-unit, so $|N(\gamma)| \neq 1$. Thus, $|N(\gamma)| = 2$.

Next, write γ as $r+s\sqrt{p}$, where $r,s\in\mathbb{Z}$. Since $|r^2-s^2p|=|N(\gamma)|=2$, we have in particular that

$$r^2 - s^2 p \equiv 2 \pmod{4}.$$

Using the fact that p, being the sum of two squares, is congruent to 1 modulo 4, this becomes

$$r^2 - s^2 \equiv 2 \pmod{4}.$$

But this is impossible, since the only possible values of $r^2 - s^2 \mod 4$ are 0 = 1 - 1 = 0 - 0 and 1 = 1 - 0 = 0 - 1. Thus, 2 has no irreducible factors.