Problem 73

Let $R:=\mathbb{Z}[\sqrt{p}]$. Given any element $\alpha \in R$, denote by $\bar{\alpha}$ the conjugate of α, i.e. the image of α under the field automorphism $\sqrt{p} \mapsto-\sqrt{p}$ of $\mathbb{Q}(\sqrt{p})$. Note that $\alpha \mapsto \bar{\alpha}$ is a ring automorphism of R, and therefore $\alpha \mid \beta$ in R iff $\bar{\alpha} \mid \bar{\beta}$ in R.

Suppose R is a UFD. We show that this implies that 2 has no irreducible factors. Since this contradicts the fact that in a Nötherian domain, such as R, every non-unit can be factored into irreducibles, R must not be a UFD.

Suppose $\gamma \in R$ is an irreducible factor of 2 . Then $\bar{\gamma} \mid \overline{2}=2$, so since R is a UFD, $N(\gamma)=\gamma \bar{\gamma} \mid 2$ in R and hence in \mathbb{Z} (if $2=(r+s \sqrt{p}) N(\gamma)$, then $s=0$ since $N(\gamma) \in \mathbb{Z}$, so $2=r N(\gamma))$. But γ is irreducible and therefore a non-unit, so $|N(\gamma)| \neq 1$. Thus, $|N(\gamma)|=2$.

Next, write γ as $r+s \sqrt{p}$, where $r, s \in \mathbb{Z}$. Since $\left|r^{2}-s^{2} p\right|=|N(\gamma)|=2$, we have in particular that

$$
r^{2}-s^{2} p \equiv 2 \quad(\bmod 4)
$$

Using the fact that p, being the sum of two squares, is congruent to 1 modulo 4, this becomes

$$
r^{2}-s^{2} \equiv 2 \quad(\bmod 4)
$$

But this is impossible, since the only possible values of $r^{2}-s^{2} \bmod 4$ are $0=1-1=0-0$ and $1=1-0=0-1$. Thus, 2 has no irreducible factors.

