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tion and interpolation arise in a variety of important practical applications of signals and 

systems, including communication systems, digital audio, high-definition television, and 

many other applications. 

Chapter 1 Problems 

The first section of problems belongs to the basic category, and the answers are pro-

vided in the back of the book. The remaining two sections contain problems belonging to 

the basic and advanced categories, respectively. 

BASIC PROBLEMS WITH ANSWERS 

7.1. A real-valued signal x(t) is known to be uniquely determined by its samples when 

the sampling frequency is Ws = 10,000'77'. For what values of w is X(jw) guaranteed 

to be zero? 

7.2. A continuous-time signal x(t) is obtained at the output of an ideal lowpass filter 

with cutoff frequency We = 1,000'77'. If impulse-train sampling is performed on x(t), 

which of the following sampling periods would guarantee that x(t) can be recovered 

from its sampled version using an appropriate lowpass filter? 

(a) T = 0.5 x 10-3 

(b) T = 2 X 1 o-3 

(c) T = 10-4 

7 .3. The frequency which, under the sampling theorem, must be exceeded by the sam-

pling frequency is called the Nyquist rate. Determine the Nyquist rate corresponding 

to each of the following signals: 

(a) x(t) = 1 + cos(2,000'7Tt) + sin(4,000'7Tt) 

(b) x(t) = sin(4,0007Tt) 
7Tt 

(c) x(t) = ( t 
7.4. Let x(t) be a signal with Nyquist rate w 0 . Determine the Nyquist rate for each of the 

following signals: 

(a) x(t) + x(t - 1) 

(b) 

(c) x2(t) 

(d) x(t) cos wot 

7.5. Let x(t) be a signal with Nyquist rate w 0 . Also, let 

y(t) = x(t)p(t- 1), 
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where 

2 
p(t) = L o(t- nT), and T < ____!!__ 

WQ 

Specify the constraints on the magnitude and phase of the frequency response of a 

filter that gives x(t) as its output when y(t) is the input. 

7.6. In the system shown in Figure P7.6, two functions of time, XI (t) and x2(t), are mul-

tiplied together, and the product w(t) is sampled by a periodic impulse train. XI (t) 

is band limited tow 1, and x2 (t) is band limited to w2 ; that is, 

XI(jw) = 0, lwl 

X2(jw) = 0, lwl w2. 

Determine the maximum sampling interval T such that w(t) is recoverable 

from wp(t) through the use of an ideallowpass filter. 

p(t) = o(t -nT) 

x1(t)---p-.X __ • Wp(l) 

x2(t) -

X1(jw) 

ch 
Figure P7.6 

7.7. A signal x(t) undergoes a zero-order hold operation with an effective sampling pe-

riod T to produce a signal x0(t). Let XI (t) denote the result of a first-order hold 

operation on the samples of x(t); i.e., 

XI (t) = L x(nT)hi (t- nT), 

n= -oo 

where hi (t) is the function shown in Figure P7.7. Specify the frequency response of 

a filter that produces x 1 (t) as its output when x0(t) is the input. 
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-T 0 T Figure P7.7 

7.8. Consider a real, odd, and periodic signal x(t) whose Fourier series representation 

may be expressed as 

5 (1 )k 
x(t) = 

2 
sin(k1rt). 

Let x(t) represent the signal obtained by performing impulse-train sampling on x(t) 

using a sampling period of T = 0. 2. 

(a) Does aliasing occur when this impulse-train sampling is performed on x(t)? 

(b) If x(t) is passed through an ideallowpass filter with cutoff frequency 1riT and 

passband gain T, determine the Fourier series representation of the output signal 

g(t). 

7.9. Consider the signal 

which we wish to sample with a sampling frequency of Ws = 1507T to obtain a 

signal g(t) with Fourier transform G(jw ). Determine the maximum value of w0 for 

which it is guaranteed that 

G(jw) = 75X(jw) for lwl ::s wo, 

where X(jw) is the Fourier transform of x(t). 

7.10. Determine whether each of the following statements is true or false: 

(a) The signal x(t) = u(t + T0 ) - u(t- T0 ) can undergo impulse-train sampling 

without aliasing, provided that the sampling period T < 2T0 . 

(b) The signal x(t) with Fourier transform X(jw) = u(w + w0)- u(w- w0 ) can 

undergo impulse-train sampling without aliasing, provided that the sampling 

period T < 7Tiwo. 

(c) The signal x(t) with Fourier transform X(jw) = u(w)- u(w- w0 ) can undergo 

impulse-train sampling without aliasing, provided that the sampling period T < 
27Tiwo. 

7.11. Let Xc(t) be a continuous-time signal whose Fourier transform has the property that 

Xc(jw) = 0 for lwl 2,0001T. A discrete-time signal 

xd[n] = Xc(n(0.5 X 10-3)) 
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is obtained. For each of the following constraints on the Fourier transform Xd(ejw) 

of xd[n], determine the corresponding constraint on Xc(jw ): 

(a) Xd(ejw) is real. 

(b) The maximum value of Xd(ejw) over all w is 1. 

(c) Xd(ejw) = 0 for 3
; ::; lw I ::; 1T. 

(d) Xd(ejw) = Xd(ej(w-1T)). 

7.12. A discrete-time signal xd[n] has a Fourier transform Xd(ejw) with the property that 

Xd(ejw) = 0 for 37T/4 ::; lwl ::; 1T. The signal is converted into a continuous-time 

signal 

oo sin ¥U - nT) 
Xc(t) = T L xd[n] 1T(t _ nT) , 

n= -oo 

where T = 1 o-3
. Determine the values of w for which the Fourier transform Xc(jw) 

of xc(t) is guaranteed to be zero. 

7.13. With reference to the filtering approach illustrated in Figure 7.24, assume that the 

sampling period used is T and the input Xc(t) is band limited, so that Xc(jw) = 0 for 

lwl 2:: 1TIT. If the overall system has the property that Yc(t) = xc(t-2T), determine 

the impulse response h[n] of the discrete-time filter in Figure 7.24. 

7.14. Repeat the previous problem, except this time assume that 

7.15. Impulse-train sampling of x[n] is used to obtain 

g[n] = L x[n]S[n- kN]. 
k= -00 

If X(ejw) = 0 for 37T/ 7 ::; lwl ::; 1T, determine the largest value for the sampling 

interval N which ensures that no aliasing takes place while sampling x[n]. 

7.16. The following facts are given about the signal x[n] and its Fourier transform: 

1. x[n] is real. 

2. X(ejw) -:t= 0 for 0 < w < 1T. 

3. 2k] = S[n]. 

Determine x[n]. You may find it useful to note that the signal (sin 1Tn) satisfies 

two of these conditions. 



x[n] 
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7.17. Consider an ideal discrete-time bandstop filter with impulse response h[ n] for which 

the frequency response in the interval -7r ::; w ::; 1T is 

lwl ::; *and lwl 
3
; . 

elsewhere 

Determine the frequency response of the filter whose impulse response is h[2n]. 

7 .18. Suppose the impulse response of an ideal discrete-time lowpass filter with cutoff fre-

quency 1r12 is interpolated (in accordance with Figure 7 .37) to obtain an upsampling 

by a factor of 2. What is the frequency response corresponding to this upsampled 

impulse response? 

7.19. Consider the system shown in Figure P7.19, with input x[n] and the correspond-

ing output y[n]. The zero-insertion system inserts two points with zero amplitude 

between each of the sequence values in x[n]. The decimation is defined by 

y[n] = w[5n], 

where w[n] is the input sequence for the decimation system. If the input is of the 

form 

sinw1n 
x[n] = ---

1Tn 

determine the output y[n] for the following values of w1: 

(a) WI ::; 
3
; 

(b) WI > 3
; 

H(eiw) 
1 - - w[n] 

Zero insertion Decimation 

-7T -7T/5 7T/5 7T 

Figure P7. 1 9 

y[n] 

7 .20. Two discrete-time systems S I and S2 are proposed for implementing an ideal low-

pass filter with cutoff frequency 7T/4. System S1 is depicted in Figure P7.20(a). 

System S2 is depicted in Figure P7 .20(b ). In these figures, SA corresponds to a zero-

insertion system that inserts one zero after every input sample, while S 8 corresponds 

to a decimation system that extracts every second sample of its input. 

(a) Does the proposed system S1 correspond to the desired ideallowpass filter? 

(b) Does the proposed system S2 correspond to the desired ideallowpass filter? 
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I ill ill Ss 
y[n] -x[n-] __ sA __ 

-'IT/8 0 'IT/8 

(a) 

I ]1 ]1 • SA 
y[n) __ ss __ 

-'IT/2 0 'IT/2 -'IT/2 0 'IT/2 

(b) 

Figure P7.20 

BASIC PROBLEMS 

7.21. A signal x(t) with Fourier transform X(jw) undergoes impulse-train sampling to 

generate 

<X) 

X p(t) = L x(nT) o(t - nT) 
n= -oo 

where T = 10-4
• For each of the following sets of constraints on x(t) and/or X(jw ), 

does the sampling theorem (see Section 7.1.1) guarantee that x(t) can be recovered 

exactly from x p(t)? 

(a) X(jw) = 0 for lwl > 50007T 

(b) X(jw) = 0 for lwl > 150007T 

(c) (Jl.e{X(jw)} = 0 for lwl > 50007T 

(d) x(t) real and X(jw) = 0 for w > 50007T 

(e) x(t) real and X(jw) = 0 for w < -150007T 

(f) X(jw) * X(jw) = 0 for lwl > 150007T 
(g) IX(jw )I = 0 for w > 50007T 

7.22. The signal y(t) is generated by convolving a band-limited signal XI (t) with another 

band-limited signal x2(t), that is, 

where 

y(t) = XI (t) * X2(t) 

X1(jw) = 0 

X2(jw) = 0 

for lw I > 1 0007T 

for lw I > 20007T. 

Impulse-train sampling is performed on y(t) to obtain 
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+oo 

Yp(t) = L y(nT)o(t - nT). 
n= -oo 

Specify the range of values for the sampling period T which ensures that y(t) is 

recoverable from Yp(t). 

7.23. Shown in Figure P7.23 is a system in which the sampling signal is an impulse train 

with alternating sign. The Fourier transform of the input signal is as indicated in the 

figure. 

(a) Ford< 7rl(2wM), sketch the Fourier transform of Xp(t) and y(t). 

(b) Ford< 7rl(2wM), determine a system that will recover x(t) from Xp(t). 

(c) Ford< 7rl(2wM ), determine a system that will recover x(t) from y(t). 

(d) What is the maximum value of din relation to WM for which x(t) can be recov-

ered from either xp(t) or y(t)? 

p(t) 

x(t)--,.._1 

p(t) 

... t 1 i 
Ll t 

l _J 2Ll l t 

X(jw) 

H(jw) 

D 
1t D 

3'TT (I) 

T Figure P7.23 

7 .24. Shown in Figure P7 .24 is a system in which the input signal is multiplied by a 

periodic square wave. The period of s(t) is T. The input signal is band limited with 

IX(jw)l = 0 for lwl ;:::: WM. 
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(a) = T/3, determine, in terms of WM, the maximum value ofT for which 

there is no aliasing among the replicas of X(jw) in W(jw ). 

(b) For = T 14, determine, in terms of w M, the maximum value of T for which 

there is no aliasing among the replicas of X(jw) in W(jw ). 

w(t) 

t 
s(t) 

Figure P7 .24 

7 .25. In Figure P7 .25 is a sampler, followed by an ideallowpass filter, for reconstruction of 

x(t) from its samples x p(t). From the sampling theorem, we know that if w s = 27TIT 

is greater than twice the highest frequency present in x(t) and We = wsf2, then the 

reconstructed signal Xr(t) will exactly equal x(t). If this condition on the bandwidth 

of x(t) is violated, then Xr(t) will not equal x(t). We seek to show in this problem 

that if We = wsf2, then for any choice ofT, Xr(t) and x(t) will always be equal at 

the sampling instants; that is, 

Xr(kT) = x(kT), k = 0, ± 1, ±2, .... 

+oo 

p(t) = l o(t -nT) 

n = -oo 

H(jw) 

ill Xr (t) 

Figure P7.25 

To obtain this result, consider eq. (7.11), which expresses Xr(t) in terms of the 

samples of x(t): 

( ) = ( T)TWe sin[we(t- nT)] 
Xr t L X n ( T) . 

n=-oo 7T Wet-n 

With We = wsf2, this becomes 

oo sin [ f (I - nT)] 

Xr(t) = L x(nT) 7T • 

n= -oo T(t- nT) 

(P7.25-l) 
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By considering the values of a for which [sin(a)]/a = 0, show from eq. 

(P7.25-l) that, without any restrictions on x(t), Xr(kT) = x(kT) for any integer 

value of k. 

7.26. The sampling theorem, as we have derived it, states that a signal x(t) must be sam-

pled at a rate greater than its bandwidth (or equivalently, a rate greater than twice its 

highest frequency). This implies that if x(t) has a spectrum as indicated in Figure 

P7.26(a) then x(t) must be sampled at a rate greater than 2w2• However, since the 

signal has most of its energy concentrated in a narrow band, it would seem reason-

able to expect that a sampling rate lower than twice the highest frequency could be 

used. A signal whose energy is concentrated in a frequency band is often referred to 

as a bandpass signal. There are a variety of techniques for sampling such signals, 

generally referred to as bandpass-sampling techniques. 

X(jw) 

1t 
w 

(a) 

+co 

x(t) ·1,.....---H-(J-.W-) x,(t) 

1 1 1 1 
T 

H(jw) 

At 

(b) Figure P7 .26 
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To examine the possibility of sampling a bandpass signal as a rate less than 

the total bandwidth, consider the system shown in Figure P7.26(b). Assuming that 

w 1 > w2 - w 1, find the maximum value ofT and the values of the constants A, wa, 

and wb such that Xr(t) = x(t). 

7.27. In Problem 7 .26, we considered one procedure for bandpass sampling and recon-

struction. Another procedure, used when x(t) is real, consists of multiplying x(t) by a 

complex -exponential and then sampling the product. The sampling system is shown 

in Figure P7.27(a). With x(t) real and with X(jw) nonzero only for w 1 < lwl < w2, 

the frequency is chosen to be w0 = (112)(w 1 + w2), and the lowpass filter H 1(jw) 

has cutoff frequency (112)(w2 - w 1 ). 

(a) For X(jw) as shown in Figure P7.27(b), sketch Xp(jw ). 

(b) Determine the maximum sampling period T such that x(t) is recoverable from 

Xp(t). 

(c) Determine a system to recover x(t) from xp(t). 

x(t) -----+-@ ·I H(jw) 

t 
e-iwot 

+70 

p(t) = 8(t-nT) 

(a) 
n = -x 

X(jw) 

L1 1t 
-w2 -w1 

(b) Figure P7.27 

7.28. Figure P7.28(a) shows a system that converts a continuous-time signal to a discrete-

time signal. The input x(t) is periodic with a period of 0.1 second. The Fourier series 

coefficients of x(t) are 

(
1 Jkl 

ak = "2 , -oo < k < +oo. 

The lowpass filter H(jw) has the frequency response shown in Figure P7.28(b). The 

sampling period T = 5 x 10-3 second. 

(a) Show that x[n] is a periodic sequence, and determine its period. 

(b) Determine the Fourier series coefficients of x[n]. 



Xc (t) 
X 
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Conversion 

x(t) 
Lowpass Xc(t) of an 

filter X impulse train x[n] = xc (nT) 
H(jw) to a 

sequence 

p(t) = I 8(t -nT) 
n = -oo 

(a) 

H(jw) 

11 
I 

-205'7T 205'7T w 

(b) 

Figure P7.28 

7 .29. Figure P7 .29( a) shows the overall system for filtering a continuous-time signal using 

a discrete-time filter. If Xc(jw) and H(eiw) are as shown in Figure P7.29(b), with 

liT = 20kHz, sketch Xp(jw ), X(eiw), Y(eiw), Yp(jw ), and Yc(jw ). 

H(jw) 

Xp (t) Conversion x[n] = Xc (nT) 
h [n] 

y[n] = Yc (nT) Conversion Yp (t) m Yc (t) 
to a 

H(eiw) 
to an 

sequence impulse train 
-'lTIT 1T/T 

p(t) =I 8(t-nT) 
n = -oo 

(a) 

Xc(jw) H(eiw) 

A 
1 

I I 
-'lT X104 '7T X104 

w 1T 1T 
-4 4 w 

(b) 

Figure P7 .29 
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7.30. Figure P7.30 shows a system consisting of a continuous-time LTI system followed 

by a sampler, conversion to a sequence, and an LTI discrete-time system. The 

continuous-time LTI system is causal and satisfies the linear, constant-coefficient 

differential equation 

dyc(t) 
d[ + Yc(t) = Xc(t). 

The input Xc(t) is a unit impulse o(t). 

(a) Determine Yc(t). 

(b) Determine the frequency response H(ejw) and the impulse response h[n] such 

that w[n] = o[n]. 

w[n] 

I 

t Conversion of 

y, ( ) , r- train 

'--------J- l sequence 

y[n] 
LTI 

p(t) = !,o(t-nT) y[n] = Yc (nT) 
n = -x 

Figure P7.30 

7 .31. Shown in Figure P7 .31 is a system that processes continuous-time signals using a 

digital filter h[n] that is linear and causal with difference equation 

1 
y[n] = 

2 
y[n - 1] + x[n]. 

For input signals that are band limited such that Xc(jw) = 0 for lw I > niT, the 

system in the figure is equivalent to a continuous-time LTI system. 

Determine the frequency response Hc(jw) of the equivalent overall system 

with input xc(t) and output Yc(t). 

(t) Conversion of x[n] 

x (t) impulse train 
c to a 

sequence 

h[n] 
y[n] Conversion of y(t) 

sequence 
to a 

impulse train 

Ideal lowpass 
filter cutoff 
frenquency 

1r/T 

p(t) =!, o(t-nT) 
n = -x. 

Hgute 

7.32. A signal x[n] has a Fourier transform X(ejw) that is zero for ( 7T/4) lwl 7T. 

Another signal 
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g[n] = x[n] L, o[n- 1 - 4k] 
k=-% 

is generated. Specify the frequency response H(e.iw) of a lowpass filter that produces 

x[n] as output when g[n] is the input. 

7.33. A signal x[n] with Fourier transform X(e.iw) has the property that 

G[n] ll[n- 3k] )• (si*!n) = x[n]. 

For what values of w is it guaranteed that X ( e.iw) = 0? 

7.34. A real-valued discrete-time signal x[n] has a Fourier transform X(e.iw) that is zero 

for 31TI14 lwl 1T. The nonzero portion of the Fourier transform of one period 

of X(e.iw) can be made to occupy the region lwl < 1T by first performing upsampling 

by a factor of L and then performing downsampling by a factor of M. Specify the 

values of L and M. 

7.35. Consider a discrete-time sequence x[n] from which we form two new sequences, 

xp[n] and xd[n], where Xp[n] corresponds to sampling x[n] with a sampling period 

of 2 and xd[n] corresponds to decimating x[n] by a factor of 2, so that 

Xp[n] = { 
0

x,[n], n = 0, ±2, ±4, .. . 
n = ±1, ±3, .. . 

and 

xd [n] = x[2n]. 

(a) If x[n] is as illustrated in Figure P7.35(a), sketch the sequences Xp[n] and xd[n]. 

(b) If X(e.iw) is as shown in Figure P7.35(b), sketch Xp(e.iw) and Xd(e.iw). 

• • ' l I I I I I I I I I I I . 

ADVANCED PROBLEMS 

0 

(a) 

0 

(b) 

Figure P7. 3 5 

37T 57T 
4 4 

n 

7.36 Letx(t)beaband-limitedsignalsuchthatX(jw) = Oforlwl2 ¥· 

117T 
4 

/ 
w 

(a) If x(t) is sampled using a sampling period T, determine an interpolating function 
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g(t) such that 

dx(t) 

dt 

(b) Is the function g(t) unique? 

569 

L x(nT)g(t - nT). 
n=-x 

7.37. A signal limited in bandwidth to lw I < W can be recovered from nonuniformly 

spaced samples as long as the average sample density is 2(W/27T) samples per sec-

ond. This problem illustrates a particular example of nonuniform sampling. Assume 

that in Figure P7.37(a): 

1. x(t) is band limited; X(jw) = 0, lwl > W. 

2. p(t) is a nonuniformly spaced periodic pulse train, as shown in Figure P7.37(b). 

3. f(t) is a periodic waveform with period T = 27TIW. Since f(t) multiplies an 

impulse train, only its values f(O) = a and = b at t = 0 and t = re-

spectively, are significant. 

4. H 1 (jw) is a 90° phase shifter; that is, 

Sampled 
x(t) 

x(t) x 1----.. 

t 
p(t) 

t t 

H1(jw) = { j, . 
- ], 

f(t) 

w >0 
w <0' 

l 
y, (t) L___j y, (t) 

0-----1 H2(jw) 

Y3 (t) 

(a) 

1 
(b) 

Figure P7. 3 7 

z(t) 
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5. H 2(jw) is an ideallowpass filter; that is, 

{

K, 

H2(jw) = K*, 

0, 

where K is a (possibly complex) constant. 

O<w < W 

-W<w<O, 

lwi>W 

(a) Find the Fourier transforms of p(t), Y1 (t), Y2(t), and y3(t). 

Sampling Chap. 7 

(b) Specify the values of a, b, and K as functions of d such that z(t) = x(t) for any 

band-limited x(t) and any d such that 0 < d < 1riW. 

7 .38. It is frequently necessary to display on an oscilloscope screen waveforms having 

very short time structures-for example, on the scale of thousandths of a nanosec-

ond. Since the rise time of the fastest oscilloscope is longer than this, such displays 

cannot be achieved directly. If however, the waveform is periodic, the desired result 

can be obtained indirectly by using an instrument called a sampling oscilloscope. 

The idea, as shown in Figure P7.38(a), is to sample the fast waveform x(t) once 

each period, but at successively later points in successive periods. The increment 

d should be an appropriately chosen sampling interval in relation to the bandwidth 

of x(t). If the resulting impulse train is then passed through an appropriate interpolat-

(a) 

x(t) x 
Periodic with 

period T; 

I X Gw) I= o 
for I w I >Wx 

00 

p(t) = 3[t-n(T + Ll)] 

H(jw) y(t) 

1 

H(jw) = 2(T + Ll) 
{

1,lwl< --

0, elsewhere 

(b) Figure P7.38 
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ing lowpass filter, the output y(t) will be proportional to the original fast waveform 

slowed down or stretched out in time [i.e., y(t) is proportional to x(at), where a < 1]. 

For x(t) = A+ B cos[(27TIT)t + 8], find a range of values such that y(t) 

in Figure P7.38(b) is proportional to x(at) with a < 1. Also, determine the value of 

a in terms ofT 

7.39 A signal xp(t) is obtained through impule-train sampling of a sinusoidal signal x(t) 

whose frequency is equal to half the sampling frequency Ws. 

x(t) = cos ( t + </.>) 

and 
+cc 

Xp(t) = L x(nT)8(t- nT) 

n=-cc 

where T = 27TIWs. 

(a) Find g(t) such that 

(

WI' ) x(t) = cos( cf>) cos 2 t + g(t). 

(b) Show that 

g(nT) = 0 for n = 0, ± 1, ±2, · · · 

(c) Using the results of the previous two parts, show that if xp(t) is applied as the 

input to an ideallowpass filter with cutoff frequency wsf2, the resulting output 

lS 

(
Ws ) y(t) = cos(cf>) cos 
2

t . 

7 .40. Consider a disc on which four cycles of a sinusoid are painted. The disc is rotated at 

approximately 15 revolutions per second, so that the sinusoid, when viewed through 

a narrow slit, has a frequency of 60 Hz. 

The arrangement is indicated in Figure P7 .40. Let v(t) denote the position of 

the line seen through the slit. Then 

v(t) = A cos(w0 t + cf> ), w 0 = 1207T. 

Position of line varies sinusoidally 
at 60 cycles per second 
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Figure P7.40 
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For notational convenience, we will normalize v(t) so that A = 1. At 60Hz, the eye 

is not able to follow v(t), and we will assume that this effect can be explained by 

modeling the eye as an ideallowpass filter with cutoff frequency 20 Hz. 

Sampling of the sinusoid can be accomplished by illuminating the disc with a 

strobe light. Thus, the illumination can be represented by an impulse train; that is, 

+oo 

i(t) = L 8(t - kT), 

k= -oc 

where liT is the strobe frequency in hertz. The resulting sampled signal is the prod-

uct r(t) = v(t)i(t). Let R(jw ), V(jw ), and l(jw) denote the Fourier transforms of 

r(t), v(t), and i(t), respectively. 

(a) Sketch V(jw ), indicating clearly the effect of the parameters cp and w 0 . 

(b) Sketch /(jw ), indicating the effect ofT. 

(c) According to the sampling theorem, there is a maximum value for T in terms 

of w 0 such that v(t) can be recovered from r(t) using a lowpass filter. Determine 

this value ofT and the cutoff frequency of the lowpass filter. Sketch R(jw) when 

T is slightly less than the maximum value. 

If the sampling period T is made greater than the value determined in part 

(c), aliasing of the spectrum occurs. As a result of this aliasing, we perceive a 

lower frequency sinusoid. 

(d) Suppose that 27T/T = w 0 + 207T. Sketch R(jw) for lwl < 407T. Denote by va(t) 

apparent position of the line as we perceive it. Assuming that the eye be-

haves as an ideallowpass filter with 20-Hz cutoff and unity gain, express va(t) 

in the form 

Va(t) = Aa cos(wa + cf>a), 

where Aa is the apparent amplitude, Wa the apparent frequency, and cf>a the 

apparent phase of Va(t). 

(e) Repeat part for 27T/T = w 0 - 207T. 

7.41. In many practical situations a signal is recorded in the presence of an echo, which we 

would like to remove by appropriate processing. For example, in Figure P7.41(a), 

we illustrate a system in which a receiver simultaneously receives a signal x(t) and 

an echo represented by an attenuated delayed replication of x(t). Thus, the receiver 

output is s(t) = x(t) + ax(t- T0 ), where Ia I < 1. This output is to be processed to 

recover x(t) by first converting to a sequence and then using an appropriate digital 

filter h[n], as indicated in Figure P7.4l(b). 

Assume that x(t) is band limited [i.e., X(jw) = 0 for lwl > WM] and that 

lal < 1. 
(a) IfT0 < 7T/wM,andthesamplingperiodistakentobeequaltoT0 (i.e.,T =To), 

determine the difference equation for the digital filter h[n] such that Yc(t) is 

proportional to x(t). 

(b) With the assumptions of part (a), specify the gain A of the ideallowpass filter 

such that Yc(t) = x(t). 

(c) Now suppose that 7TIWM <To< 27T/wM. Determine a choice for the sampling 

period T, the lowpass filter gain A, and the frequency response for the digital 

filter h[n] such that Yc(t) is proportional to x(t). 
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(a) 

Receiver output 
s(t) = x(t) +a x(t-T0) 

ldeallowpass 

filter 
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sc(t) = x(t) +ax(t-T0) 

---L sp(t) 
Conversion of 

impulse train 

to a 

sequence 

s[n] y[n] 
h[n] 

Conversion of 

sequence 

to 

impulse train 
'IT 

T T 

p(t) = 8(t-kT) 
k =-X 

(b) 

Figure P7.41 

7.42. Consider a band-limited signal xc(t) that is sampled at a rate higher than the Nyquist 

rate. The samples, spaced T seconds apart, are then converted to a sequence x[n], 

as indicated in Figure P7.42. 

p(t) = 8(t-nT) 
n = -x 

1 xp(t) Conversion of 

Xc(t) x impulse train x[n] = Xc (nT) 

to sequence 

Figure P7.42 

Determine the relation between the energy Ed of the sequence, the energy Ec 

of the original signal, and the sampling interval T. The energy of a sequence x[n] is 

defined as 

n= -cxc 

and the energy in a continuous-time function Xc(t) is defined as 

I 
+oc 

Ec = -cxc lxc(t)j
2 

dt. 
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7.43. Figure P7.43(a) depicts a system for which the input and output are discrete-time 

signals. The discrete-time input x[n] is converted to a continuous-time impulse train 

Xp(t). The continuous-time signal Xp(t) is then filtered by an LTI system to produce 

the output Yc(t), which is then converted to the discrete-time signal y[n]. The LTI 

system with input Xc(t) and output Yc(t) is causal and is characterized by the linear 

constant -coefficient differential equation 

d
2

yc(t) 
4

dyc(t) 
3 

() _ () 
+ + Yc t - Xc t . 

The overall system is equivalent to a causal discrete-time LTI system, as indicated 

in Figure P7 .43(b ). 

Determine the frequency response H(eiw) and the unit sample response h[n] 

of the equivalent LTI system. 

+oo 

8(t-nT) 
n = -x 

HOw) 

x[n] Conversion Ih Conversion 

to a 
sequence 

toan h(t) y[n] 
impulse train 

-'ITIT 'ITIT 

(a) 

h[n]; H(eiw) 

x[n] equivalent y[n] 
LTI system 

(b) 

Figure P7.43 

+-x 

xp(t) = x[n] 8(t-nT) 
n =-x 

+x 

Yp(t) = Yc(t) 8(t -nT) 
n =-x 

y[n] = Yc(nT) 

7 .44. Suppose we wish to design a continuous-time generator that is capable of producing 

sinusoidal signals at any frequency satisfying 

where w 1 and w2 are given positive numbers. 

Our design is to take the following form: We have stored a discrete-time cosine 

wave of period N; that is, we have stored x[O], ... , x[N - 1], where 



x[O] 

x[N-1] 
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(
21Tk) x[k] =cos N . 

Every T seconds we output an impulse weighted by a value of x[k], where we pro-

ceed through the values of k = 0, l, ... , N - 1 in a cyclic fashion. That is, 

Yp(kT) = x(k modulo N), 

or equivalently, 

(
21Tk) Yp(kT) = cos N , 

and 

+oo (2 k) 
Yp(t) = cos o(t - kT). 

(a) Show that by adjusting T, we can adjust the frequency of the cosine signal being 

sampled. That is, show that 

+oo 

Yp(t) = (cos wot) o(t - kT), 
k= -oo 

where w 0 = 21TI NT. Determine a range of values for T such that y pCt) can rep-

resent samples of a cosine signal with a frequency that is variable over the full 

range 

(b) Sketch Y p(jw ). 

The overall system for generating a continuous-time sinusoid is depicted 

in Figure P7.44(a). H(jw) is an idea11owpass filter with unity gain in its pass-

band; that is, 

H(jw) = { 
1
' 

0, 

...... y(t) 

(a) 

Figure P7 .44 

lwl <We 

otherwise· 

y(t)--.... G(jw) t----•.,._ cos wt 

(b) 
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The parameter We is to be determined so that y(t) is a continuous-time cosine 

signal in the desired frequency band. 

(c) Consider any value of T in the range determined in part (a). Determine the 

minimum value of Nand some value for we such that y(t) is a cosine signal in 

the range w 1 :5 w :5 w2. 

(d) The amplitude of y(t) will vary, depending upon the value of w chosen between 

w 1 and w 2 . Thus, we must design a system G(jw) that normalizes the signal as 

shown in Figure P7.44(b). Find such a G(jw ). 

7.45. In the system shown in Figure P7.45, the input Xc(t) is band limited with Xc(jw) = 
0, lwl > 27T X 104

. The digital filter h[n] is described by the input-output relation 

HUw) 

l 
Conversion x[n] = Xc(nT) y[n] Conversion Yp(t) _ill_ Yc(t) 

to a h[n] to an 
sequence impulse train 

1T 

T T 

+oo 

p(t) = L o(t-nT) 
n = -x 

Figure P7 .45 

II 

y[n] = T L x[k]. (P7.45-l) 
k= -'X 

(a) What is the maximum value of T allowed if aliasing is to be avoided in the 

transformation from Xc(t) to Xp(t). 

(b) With the discrete-time LTI system specified through eq. (P7.45-l), determine 

its impulse response h[n]. 

(c) Determine whether there is any value ofT for which 

y[ n] = L x,.( T) d T. (P7 .45-2) 

If so, determine the maximum value. If not, explain and specify how T would 

be chosen so that the equality in eq. (P7.45-2) is best approximated. (Think 

carefully about this part; it is easy to jump to the wrong conclusion!) 

7.46 A signal x[n] is sampled in discrete time as shown in Figure P7.46. hr[n] is an ideal 

lowpass filter with frequency response 

lwl < 
< lwl < 1T 

From eqs. (7.46) and (7.47), the filter output is expressible as 

x,[n] = x[kN]h,[n- kN] = k'!toc x[kN]N;, 
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x[n] 

+oo 

p[n] = l o(n -kN) 
k =-'X Figure P7.46 

where We = 2n"/N. Show that independent of whether the sequence x[n] is sam-

pled above or below the Nyquist rate, Xr[mN] = x[mN], where m is any positive or 

negative integer. 

7.47. Suppose x[n] has a Fourier transform that is zero for 7T/3 :::; lwl :::; 'TT. Show that 

oo - 3k))) 
x[n] = x[3k] - 3k) . 

7.48. Ifx[n] = <Po< 27Tandg[n] = 
additional constraints must be imposed on <Po to ensure that 

(

sin !!_n) 
g[n] * = x[n]? 

7.49. As discussed in Section 7.5 and illustrated in Figure 7.37, the procedure for interpo-

lation or upsampling by an integer factor N can be thought of as the cascade of two 

operations. The first operation, involving system A, corresponds to inserting N - 1 

zero-sequence values between each sequence value of x[ n], so that 

n = 0, ± N, ± 2N, ... 

otherwise 

For exact band-limited interpolation, H(eiw) is an ideallowpass filter. 

(a) Determine whether or not system A is linear. 

(b) Determine whether or not system A is time invariant. 

(c) For Xd(eiw) as sketched in Figure P7.49 and with N = 3, sketch Xp(eiw). 

(d) For N = 3, Xd(eiw) as in Figure P7.49, and H(eiw) appropriately chosen for 

exact band-limited interpolation, sketch X(eiw). 

-'IT 'IT w Figure P7 .49 
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7 .50. In this problem, we consider the discrete-time counterparts of the zero-order hold and 

first-order hold, which were discussed for continuous time in Sections 7 .1.2 and 7 .2. 

Let x[n] be a sequence to which discrete-time sampling, as illustrated in Fig-

ure 7.31, has been applied. Suppose the conditions of the discrete-time sampling 

theorem are satisfied; that is, w s > 2w M, where Ws is the sampling frequency and 

X(ejw) = 0, WM < lwl ::=; 1T. The original signal x[n] is then exactly recoverable 

from Xp[n] by ideal lowpass filtering, which, as discussed in Section 7.5, corre-

sponds to band-limited interpolation. 

The zero-order hold represents an approximate interpolation whereby every 

sample value is repeated (or held) N - 1 successive times, as illustrated in Figure 

P7.50(a) for the case of N = 3. The first-order hold represents a linear interpolation 

between samples, as illustrated in the same figure. 

I I I I J I I r I I I J J I I I J I t 

x[n] 

n 

J • • I . . I . . I L. I 
xp[n] 

• • • • I n 

rfllflll1II1111111l 
(a) 

n 

x1 [n] 

FOH 

n 

ZOH 

(b) 

x0[n]-Et--- x[n] 

(c) 

FOH 

(d) Figure P7.50 
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(a) The zero-order hold can be represented as an interpolation in the form of eq. 

(7.47) or, equivalently, the system in Figure P7.50(b). Determine and sketch 

h0 [n] for the general case of a sampling period N. 

(b) x[n] can be exactly recovered from the zero-order-hold sequence x0 [n] using an 

appropriate LTI filter H(efw), as indicated in Figure P7.50(c). Determine and 

sketch H(efw). 

(c) The first-order-hold (linear interpolation) can be represented as an interpolation 

in the form of eq. (7.47) or, equivalently, the system in Figure P7.50(d). Deter-

mine and sketch h 1 [ n] for the general case of a sampling period N. 

(d) x[n] can be exactly recovered from the first-order-hold sequence x 1 [n] using an 

appropriate LTI filter with frequency response H(efw). Determine and sketch 

H(efw). 

7.51. As shown in Figure 7.37 and discussed in Section 7.5.2, the procedure for inter-

polation or upsampling by an integer factor N can be thought of as a cascade of 

two operations. For exact band-limited interpolation, the filter H(efw) in Figure 

7.37 is an ideal lowpass filter. In any specific application, it would be necessary 

to implement an approximate lowpass filter. In this problem, we explore some use-

ful constraints that are often imposed on the design of these approximate lowpass 

filters. 

(a) Suppose that H(efw) is approximated by a zero-phase FIR filter. The filter is 

to be designed with the constraint that the original sequence values xd [ n] get 

reproduced exactly; that is, 

x[n] xd [I]• n 0, ±L, ±2L, .... (P7 .51-1) 

This guarantees that, even though the interpolation between the original se-

quence values may not be exact, the original values are reproduced exactly in 

the interpolation. Determine the constraint on the impulse response h[n] of the 

lowpass filter which guarantees that eq. (P7 .51-1) will hold exactly for any se-

quence xd[ n]. 

(b) Now suppose that the interpolation is to be carried out with a linear-phase, 

causal, symmetric FIR filter of length N; that is 

h[n] = 0, n < 0, n > N - l, (P7.51-2) 

(P7.51-3) 

where HR(e.iw) is real. The filter is to be designed with the constraint that the 

original sequence values xd [ n] get reproduced exactly, but with an integer delay 

a, where a is the negative of the slope of the phase of H(efw); that is, 

[n- a] 
x[n] = xd -L- , n - a = 0, ±L, ±2L, ... (P7.51-4) 

Determine whether this imposes any constraint on whether the filter length N 

is odd or even. 
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(c) Again, suppose that the interpolation is to be carried out with a linear-phase, 

causal, symmetric FIR filter, so that 

H(ejw) = HR(ejw)e- jf3w, 

where H R( ejw) is real. The filter is to be designed with the constraint that the 

original sequence values xd[n] get reproduced exactly, but with a delay M that 

is not necessarily equal to the slope of the pha&e; that is, 

[n- a] x[n] = xd -L- , n- M = 0, ±L, ±2L, .... 

Determine whether this imposes any constraint on whether the filter length N is 

odd or even. 

7.52 In this problem we develop the dual to the time-domain sampling theorem, whereby 

a time-limited signal can be reconstructed fromfrequency-domain samples. To de-

velop this result, consider the frequency-domain sampling operation in Figure P7 .52. 

- +oo 
X = X(jw)P(jw) = X0kw0) 3(w-kw0) 

k = -00 

+oo 

P(jw) = 3(w- kw0) 

k = -00 

(J) 

P(jw) 

t t t t l 1 1 1 t 

(J) Figure P7.52 
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(a) Show that 

x(t) = x(t) * p(t) 

where x(t), x(t), and p(t) are the inverse Fourier transforms of X(jw ), X(jw ), 

and P(jw ), respectively. 

(b) Assuming that x(t) is time-limited so that x(t) = 0 for ltl 2: _!!_,show that x(t) 
Wo 

can be obtained from x(t) through a "low-time windowing" operation. That is, 

x(t) = x(t)w(t) 

where 

{ 

wo, 
w(t) = O, 

(c) Show that x(t) is not recoverable from x(t) if x(t) is not constrained to be zero 

for It I 2: .!!_. 
wo 


	Problems

